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Chapter 1 

Diabetes 

According to World Health Organization, about 220 million people around the 

world suffer from Diabetes. Surveys conducted by American Diabetes Association, 

showed about 8.3% of Americans, including children and adults, suffer from diabetes 

[data from 2011 National Diabetes Fact Sheet]. In US, diabetes ranks 7th as a leading 

cause of death either as a contributing factor or the underlying cause for morbidity. 

Diabetes mellitus is a metabolic disorder characterized by abnormally high blood sugar 

levels. The high sugar in blood leads to classical symptoms of polyuria (frequent 

urination), polydipsia (increased thirst) and polyphagia (increased hunger). There are 

three types of diabetes: 

• Type 1 diabetes [T1DM]: Earlier known as juvenile diabetes or insulin-

dependent diabetes, is a chronic condition where the body’s immune system 

attacks insulin-producing beta cells. Various factors contribute to T1DM from 

genetics to viruses. It is typically seen developing at adolescence. 

• Type 2 diabetes [T2DM]: A heterogeneous disorder characterized by impaired 

secretion of insulin and insulin resistance. The disease progresses from a 

stage of prediabetes to overt T2DM. Essentially there is progressive 

dysfunction of islet during the course of the disease where insulin secretion is 

gradually blunted. Along with impairment in insulin secretion, there is 

evidence for reduction in beta cell mass.  
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• Gestational diabetes: Develops in pregnant women which might precede the 

development of T2DM. 

Pathogenesis of T2DM 

 T2DM is marked by a substantial beta-cell failure which starts at an early stage in 

disease progression and after which deterioration accelerates precipitously. A study 

conducted in the UK demonstrates a 50% loss in beta-cell secretory capacity by the 

time fasting hyperglycemia was diagnosed [1]. In support of this, genome-wide studies 

linked chromosomal loci for T2DM to genes associated with pancreatic beta-cell 

development and survival and in the control of insulin secretion [2]. Under normal 

conditions, the beta-cell balances changes in insulin sensitivity with proportionate 

changes in beta-cell function, demonstrating a hyperbolic relationship between 

sensitivity to and secretion of insulin. However, in persons with beta-cells predisposed 

to T2DM, an imperfect compensatory mechanism, dysregulated glycemic levels and 

abnormal beta-cell function are the triggers. Persons who progressed to T2DM as a 

result of abnormal beta-cell function were termed as “progressors” and exhibited beta-

cell dysfunction even before reaching impaired glucose tolerance [IGT]. With 

progressing dysfunction, insulin secretion is reduced by ~80% accompanied by a 14% 

decrease in sensitivity to insulin [3]. Whereas in nonprogressors, an 11% decrease in 

insulin sensitivity was compensated by 30% increase in insulin secretion. This was 

indicative of a transitory mechanism from normoglycemia to IGT to diabetes that 

resulted from ineffective beta-cell compensatory effort for constant insulin resistance in 

progressors [4]. 
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Figure 1-1. Proposed scheme for progression of T2DM [5]. 

Both genetic and acquired factors contribute to progressive beta-cell failure. 

While genes encoding proteins responsible for glucose metabolism and insulin signaling 

maybe compromised, acquired factors like glucotoxicity, lipotoxicity, inflammatory 

cytokines and islet amyloid polypeptide [IAPP] deposition also contribute to beta-cell 

failure [6, 7]. Numerous studies have demonstrated the functional, qualitative and 

anatomic manifestations of beta-cell failure associated with T2DM. A qualitative defect 

in release of insulin is marked by disrupted pulsatile secretion and processing of the 

precursor proinsulin to fully active insulin [8, 9]. This is consistent with the loss of first-

phase insulin secretion in both insulin dependent and non-insulin dependent diabetes. 

The above facts indicate the importance of studying the mechanisms that regulate and 
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control beta-cell physiology. Understanding beta-cell function may pave the way for a 

better understanding of the pathophysiology of beta-cell dysfunction and aid in 

discovering new therapeutic agents to protect beta-cells from defects. 

Islet of Langerhans 

 

 

 

 

 

 

Figure 1-2. Photo of an islet of Langerhans under microscope (Courtesy: web diabetes     
                 Leeds Yorkshire) 
 

Islet of Langerhans named after famous pathologist, Paul Langerhans, is a 

critical organ that is divided into million other units embedded in the pancreas. Islets are 

an ellipsoid cluster of cells with a diameter of ~50-250 µm. Islets come of different size 

with medium sized islets contributing to total islet volume. But islets found in diabetes 

can get very large ~350 µm due to oedema and amyloid accumulation [10]. The number 

of islets in pancreas depends on the age, BMI, and size of pancreas. 

 The term “islet” was derived from their appearance as an island of cells in close 

proximity to capillaries. Each islet is made of 100-1000 cells and is a mix of α-, β- and δ-

cells scattered throughout. Pancreatic islets are highly-vascularized micro-organs 

composed of diverse cell types. About ~64% in the human islet is made of insulin-

secreting β-cells and remaining are 26% glucagon-secreting α-cells, 8% δ-cells which 

secrete somatostatin [11]. Human islets represent a unique cytoarchitecture [12] as 
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compared to rodent islets. In humans, the various cells are dispersed with no particular 

arrangement as opposed to rodent islets which contain a core of insulin-secreting beta-

cells. Such arrangement of cells in the islet suggests paracrine effect among the various 

types of endocrine cells. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3. Above is a representation of islets showing interspecies differences. Panels 
A-D represents confocal micrographs of immunostained islets from human [A], monkey 
[B], mouse [C] and pig [D]. Insulin was immunostained red, Glucagon stained green and 
somatostatin stained blue [12]. 
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Pancreatic beta-cells are the sole source of insulin, the major regulator of blood 

glucose levels. Under physiological and pathological conditions, beta-cells coordinate 

between increased insulin secretory granule [SG] biogenesis and insulin resistance 

[13]. In conditions of high metabolic demands, beta-cells upregulate their insulin 

synthesis and secretion. Glucose promotes the release of insulin from beta-cells while 

increasing insulin production in order to replenish its stores. This is made effective by a 

concomitant increase in biosynthesis of luminal and membrane proteins that facilitate 

assembly and function of SGs. Secretory granules in beta cells are 300-350 nm in 

diameter and are found polarized in the cell facing blood capillaries. Structural 

separation does not stop the islet cells from communicating with each other. Each beta 

cell communicates with the other through paracrine actions. Electrophysiological studies 

also reveal beta cells to electrically synchronize with each other via gap junctions.  

Insulin secretion 

Over the years, pancreatic beta-cells have represented a well-characterized 

endocrine system for regulated secretion of insulin hormone from large dense core 

granules. Insulin secretion involves an intricate process, coupling various stimuli - 

hormones, neurotransmitters and nutrients. Signal transduction systems co-ordinate the 

multiple stimuli and aid in regulating secretion of insulin. Type 2 diabetes, the most 

prevalent form, is characterized by insulin resistance and beta-cell dysfunction. Gradual 

intolerance to glucose develops into diabetes where compensatory secretion of insulin 

is lost. Thus a fundamental understanding of molecular mechanisms governing 

stimulus-coupled secretion of insulin is necessary. 
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Overview of insulin secretion 

It is widely published that glucose is a primary stimulus for secretion of insulin 

from pancreatic beta cells. Metabolism of glucose provides the necessary signal to 

activate signal transduction system within the beta cell. This pathway is nutrient-

stimulated secretion which is distinct from other pathways acting via heterotrimeric G-

proteins. Increase in extracellular concentration of glucose in blood creates an inflow of 

glucose into pancreatic beta-cell. Beta-cells are equipped with glucose-metabolizing 

enzymes. One such enzyme is glucokinase, which phosphorylates and increases the 

Km for glucose. This increases the metabolic rate of glucose for a physiological range of 

glucose concentrations.  

Currently the well-understood mechanism for glucose-stimulated insulin secretion 

[GSIS] is outlined below [14]: 

• Beta-cell acts as a glucose sensor, engulfing excess glucose from the blood. 

• Glucose metabolism increases ATP/ADP ratio, which in turn closes ATP-

sensitive K+ channels. 

• Closure of K+ channels depolarizes the membrane and results in opening of 

voltage-sensitive Ca2+ channels. 

• Intracellular concentration of Ca2+ increases which sensitizes insulin-laden 

vesicles for fusion and release. 
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Figure 1-4. Insulin secretion in beta cells is triggered by rising blood glucose levels. 
Starting with the uptake of glucose by the GLUT2 transporter, the glycolytic 
phosphorylation of glucose causes a rise in the ATP:ADP ratio. This rise inactivates the 
potassium channel that depolarizes the membrane, causing the calcium channel to 
open up allowing calcium ions to flow inward. The ensuing rise in levels of calcium leads 
to the exocytotic release of insulin from their storage granules [Taken from Beta Cell 
Biology Consortium]. 
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However, in recent years it has become apparent that factors other than ATP and 

Ca2+ [15] play a regulatory role in secretion of insulin. Not only nutrients, but also 

neurotransmitters and hormones regulate the secretory process. Non-nutrient 

stimulants, like acetylcholine, potentiate insulin secretion via release of Ca2+ from 

intracellular stores by activating phospholipase C [PLC] [16, 17] and generating second 

messengers like DAG and IP3, whereas neuromodulators like GLP-1 [18, 19] promote 

insulin release via interaction with specific cell-surface receptors.  Hormones like 

somatostatin inhibit insulin secretion by lowering second messengers such as cAMP 

and indirectly modulating Ca2+ channels [20, 21]. Thus a balanced interplay between 

various regulatory factors helps to maintain glucose homeostasis. 

Sequential events of exocytosis 

Insulin is a peptide hormone packaged into large dense core vesicle [secretory 

granules] and released via exocytosis from pancreatic beta-cell. Exocytotic processes 

are mediated by protein components of secretory machinery which are activated in 

response to a stimulus. Exocytosis is marked by fusion of secretory vesicles with 

plasma membrane and emptying out its contents, i.e. insulin, out into the extracellular 

space to reach target organs [22, 23]. Apart from transporting insulin, secretory 

granules act as a ‘warehouse’ for insulin, releasing it as and when required. Only a 

small proportion of insulin is released on stimulation, the remaining being recycled back 

into the cell. Thus to comprehend insulin secretion beyond metabolism of glucose, the 

molecular pathway must be dissected involving exocytotic machinery and its modulatory 

factors. 
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Formation of Insulin Granules 

Secretory vesicles are of two types: synaptic vesicles and large dense core vesicles 

[LDCV]. Neurotransmitters are packed into synaptic vesicles which are subjected to 

rapid exo-endocytosis, refilling and a subsequent round of fusion. On the other hand, 

peptide hormones like insulin are packed into large dense core vesicles [LDCV]. LDCVs 

are not exactly synthesized de novo but gradually “bud off” from the golgi bodies as they 

are appropriately filled with biosynthetic cargo, proinsulin [24, 25]. Characteristic of 

LDCVs, proinsulin undergoes a series of maturation steps where the C-peptide is 

cleaved and insulin is released from proinsulin. Pancreatic beta-cell is abundant with 

insulin-laden vesicles but even at maximally-stimulating conditions, only a small 

proportion of insulin is released. This clearly reflects importance of regulation of 

secretion than on the biosynthetic rate. 
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Figure 1-5. Insulin granule: Electron micrograph [Left] of beta-cell. Contains thousands 
of small membrane-bound vesicles loaded with insulin [Right]. These granules contain 
many proteins, small molecules and ions in the lumen as well as transmembrane 
proteins, channels and membrane-associated proteins. Insulin [INS], amylin [IAPP], 
insulin-like growth factor [IGF] [25]. 

Towards Plasma Membrane 

Chromaffin cells stand as a comparable system to study exocytosis of LDCVs. 

Secretion of insulin granules from beta-cells mimic analogously exocytotic process in 

chromaffin cells [26, 27]. In resting conditions, cortical actin forms a network and acts 

as a barrier for the movement of insulin granules to the plasma membrane. It has been 

shown with the help of clostridium toxin and other pharmacologic agents that disruption 

of actin barrier is important for the movement of granules to access the plasma 

membrane [28]. Liberation of Ca2+ from intracellular stores aids in cytoskeletal 

remodeling. On the other hand, there has been evidence for involvement of molecular 

motors, myosin-actin system, for which ATP serves as energy sponsor activating 

myosin and kinases like myosin-light chain kinases [29]. With recent advances in 

microscopy, ultrastructural visualization has revealed vesicles docking in proximity to 

plasma membrane in insulin secreting beta-cells.  

 
At the Plasma Membrane 

In neuroendocrine cells, where Ca2+ regulated secretion has been extensively 

studied insertion of vesicles into plasma membrane can be divided into two distinct 

biochemical events: priming and fusion. Both events seem to require distinct factors. 

“Priming” event requires the absolute necessity for ATP, sub-micro concentrations of 

Ca2+ and alterations in lipids by phosphatidyl transfer protein I [PTP I] and 
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phosphatidylinositol-4-phosphate-5-kinase [PI4P5K] [30, 31]. “Fusion” step is 

characterized by the requirement of Ca2+. Since then the importance of PI4P5K in 

secretion of insulin has been emphasized.  

Biphasic Insulin Secretion 

Priming and fusion are functional events which underlie a biphasic secretion as 

observed in many cell types. Like many other cells, beta-cells also display an initial 

rapid phase of secretion [priming] followed by more a sustainable phase [fusion]. In type 

II diabetes, a complete loss of first phase accompanied by reduction in second phase is 

observed [31]. Several studies over the past years have demonstrated the availability of 

a readily releasable pool [RRP] of insulin granules that are immediately available for 

release upon stimulation of beta-cells. The RRP is believed to be a subset of already 

docked granules. ATP- and time-dependent priming of newly supplied granules 

constitutes the second phase of secretion. The rate limiting step controlling the rate of 

release in the second phase is the continued recruitment and priming of new granules 

for release.  
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Figure 1-6. Schematic representing Reserve, Docked and Readily releasable granule 
pools in mouse pancreatic beta-cell [35]. 

 

As per Lang, the terms docking, priming and readily releasable pool are 

functional terms designed to indicate their working description [36]. Docked vesicles 

indicate a morphological description, primed vesicles are biochemically defined for their 

ability to respond to Ca2+ and ATP and readily releasable pool was defined as an 

electrophysiological description. Though each term was defined for operational purpose, 

relation between them is yet to be established. 

Modern theory: Kiss and run 

For years, the mechanism by which insulin-laden dense core SGs approach and fuse 

with plasma membrane have gained interest. The defects in these processes maybe 

one of the contributing factors to T2DM. The release of insulin through exocytosis 

follows similar steps as that of other peptide hormones and neurotransmitters, each 

involving Ca2+-regulated fusion of secretory vesicles at plasma membrane. But there 

are several aspects which are unique to GSIS. What happens to the dense-core vesicle 

at the plasma membrane? Seminal work by Rothman and many others have identified a 

“minimal machinery” for exocytosis [37]. It comprises of soluble NH2-ethylmaleimide-

sensitive fusion protein attachment protein receptors [SNAREs].  

SNARE 

Initial studies, identified SNARE proteins in neurons and was assumed they were 

neuron-specific. But studies done in pancreatic beta-cells found SNARE proteins to be 

generally associated with exocytotic processes. Later studies characterized many of the 
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SNARE proteins like v-SNAREs [synaptobrevin/VAMP-2] on the vesicles and t-SNAREs 

[syntaxin, SNAP25] on the plasma membrane in beta-cells [38]. They play an essential 

role in Ca2+ regulated secretion. In addition to these proteins, there are Munc18 and 

NSF that aid in Ca2+ regulated exocytosis. Interaction of these proteins to form a 

“SNARE TUBE” serves to provide membrane selectivity and thermodynamic driving 

force for membrane fusion. Earlier studies by Yang and Gillis [39] in INS-1 cells 

demonstrated the existence of two pools of vesicles. One pool was sensitive to high 

Ca2+ and may respond only to large increases in Ca2+ and which are situated adjacent 

to Ca2+ channels at plasma membrane while the other pool of vesicles are remotely 

located and are able to fuse with the membrane at lower Ca2+ levels.  

Vesicle docking 

The process whereby remotely located vesicles finally interact with the plasma 

membrane with varying dependency on MgATP and phospholipids including 

phosphatidylinositol 4, 5 bisphosphate [PIP2] is termed as “docking”. The recent 

emergence of the involvement of “exocyst” complex in docking of secretory granules in 

neurons seems to hold true in beta-cells also [40]. The approach of vesicles to the 

plasma membrane requires formation of Sec6-Sec8 (exocyst) complex which is denoted 

as DOCKING in the figure [41]. Fusion of docked vesicles requires the elevation of Ca2+ 

sensors such as synaptotagmins. This fusion leads to a partial release of vesicle’s 

content [insulin] which is released as dimers with Zn2+ through a ~4 nm fusion pore. In 

the meanwhile, low molecular weight molecules such as ATP and lipid components of 

vesicle membrane rapidly associate with lipids of plasma membrane. This event where 

the membrane is captured is termed as “cavicapture” [42]. A large GTPase dynamin-1 
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terminates this cavicapture by pinching the vesicle membrane away from the plasma 

membrane. This marks the endocytic phase of vesicle trafficking. Electron microscopy 

in the past implied that the cargo from vesicles was emptied via an expanding pore that 

eventually flattened itself into the membrane [43]. Such mechanism is a result of strong 

stimulation as seen during repetitive membrane depolarizations measured using patch 

clamp technique [44]. While one set of studies suggest granule membrane to undergo 

complete fusion with the plasma membrane, [45-48] alternative studies suggest for a 

transient fusion pore opening through which cargo diffuse out followed by recycling of 

vesicles. This process is termed as “kiss-and-run” where the granule membrane content 

mix or stay separate from the plasma membrane [49-51]. 

  

 

 

 

 

 

 

 

 

 

Figure 1-7. An exocytotic-endocytotic process in beta-cells [40]. 
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Apart from SNAREs, other important regulators of granule trafficking include 

guanine nucleotides, small G-proteins of Rab, Arf and Rho family and dynamin 

GTPases. 

Guanine Nucleotides 

In many systems like chromaffin cell, mast cells and pancreatic beta-cells, 

exocytosis can be triggered independent of Ca2+. The induction of exocytosis was 

carried out by intracellular application of GTPγS, a non-hydrolyzable analog of GTP. 

Gomperts review gave rise to the term GE, G-protein for exocytosis, which affected 

exocytosis without any involvement of second messengers [52]. Wollheim’s group 

investigated the effects of guanine nucleotides on insulin-secreting RINm5F cells and 

islets and demonstrated a GTP-induced, Ca2+ independent secretion of insulin. GTPγS 

stimulated a slow but persistent release of insulin and its effect was not additive with 

Ca2+, it did not require activation of PLC or PKC or the involvement of SNARE proteins. 

Since both Ca2+- and GTPγS-induced exocytosis requires ATP and metabolism of 

glucose regulates cellular levels of both ATP and GTP, a link was established between 

glucose metabolism and insulin secretion [54, 55]. Kinetic studies were performed to 

understand the sequential events behind Ca2+ and GTPγS induction of secretion and 

understood that these two stimuli act at different phases of fusion of a same pool of 

vesicles. This made clear that Ca2+ and GTPγS followed a common but distinct step in 

the fusion process [56]. 
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GTP-binding proteins 

The vectorial movement of proteins coupling exocytosis and endocytosis in eukaryotes 

is mediated by a multitude of protein families. The first ever evidence that G-proteins 

play an important role in hormone action was proven in early ‘70s in a work done by 

Rodbell to show that cAMP generation by glucagon stimulation required GTP [57]. Two 

toxins, pertussis and cholera, have been instrumental in identifying nine G-proteins and 

their action.  It soon became apparent that G-proteins not only worked as stimulators 

but also inhibited secretion of hormones according to subunit activated [58, 59]. Metz 

SA, in their JBC article, 1992, emphasized the necessity for GTP in exocytosis of insulin 

from intact rat islets using selective inhibitors of GTP synthesis [60]. Ever since 

functional roles for G-proteins in insulin secretion have been scrutinized. GTP 

essentially activated either heterotrimeric G-proteins or small molecular-weight G-

proteins by binding to them [58, 61].  

Heterotrimeric G-proteins 

Heterotrimeric G-proteins have been shown to effectively link signal recognition 

elements, receptors, to the signal generators, effectors. Emerging evidence indicates a 

role for heterotrimeric G-proteins in insulin secretion. Heterotrimeric GTPases are 

composed of three subunits: α-subunit and βγ-dimer. α-subunit is activated by replacing 

GDP with GTP which allows for dissociation of βγ-dimer. Both αGTP and βγ-dimer affect 

a variety of effectors from ion channels to kinases. Activity of heterotrimeric GTPases is 

regulated by GTPase activity intrinsic to α-subunit and also by Regulator of G-protein 

Signaling proteins [RGS] as described by Gilman [62, 63]. The heterogeneity offered by 



www.manaraa.com

18 

 

 

the possible combinations of multiple isoforms of α, β and γ makes it difficult to 

understand their functional parts. In beta-cells, activators of Gαi  and Gαo inhibit release 

of insulin via the inhibition of adenylate cyclase       Reduced cAMP levels and PKA 

activation [64]. Whereas activators of isoform Gαq influence insulin secretion via PLC 

activation leading to generation of IP3 and DAG. These second messengers further 

release Ca2+ from intracellular stores and activate PKC respectively. Another set of 

activators stimulate adenylate cyclase and activate PKA through generated cAMP [65, 

66]. Of the three subunits, α-subunit was dissected with respect to insulin secretion but 

later studies justified the presence of βγ-subunits in both Ca2+ and GTPS stimulated 

insulin release [67]. 

 

 

 

 

 

 

Figure 1-8. Effect of regulator of G protein signaling (RGS) proteins on the classical G 
protein cycle at the plasma membrane. A G protein–coupled receptor (GPCR) serves as 
a guanine nucleotide exchange factor (GEF) that activates the G protein by enhancing 
GDP dissociation from the Gα subunit. Gα and Gβγ dissociate and stimulate their 
respective effectors. RGS proteins serve as GTPase activating proteins that accelerate 
GTP hydrolysis and thereby return the Gα subunit to its inactivated GDP-bound form, 
followed by reassembly of the heterotrimer [68]. 

 

 



www.manaraa.com

19 

 

 

Role of small monomeric G-proteins 

In the classic 2-compartment model of insulin secretion, the link between small 

GTP-binding proteins and the KATP channel-dependent and –independent pathways 

always remains unclear. And for the reason that guanine nucleotides have an effect on 

secretion of insulin the role for small G-proteins was determined. Small G-proteins have 

proven to play role in pairing t-SNARE with v-SNARE in Ca2+-induced exocytosis. And 

also these proteins initiate and maintain transition of beta granules from reserve pool to 

readily releasable pool thus maintaining the biphasic insulin response. 

Small GTP-binding proteins are fondly called as “molecular switches” for their 

tendency to alternate between active and inactive conformational states. GTPases of 

varying diversity control and modulate different cellular activities from growth to cell 

death. They participate in membrane traffic controlling formation, targeting and fusion of 

secretory vesicles. Small G-proteins are otherwise termed as Ras-like proteins with Ras 

being a prototype. They are essentially grouped into six major families: Ras, Rho, Rab, 

Arf, Sar1 and Ran family of proteins. The last four members regulate intracellular 

vesicle trafficking, the Ras family regulate cellular growth and the Rho family regulate 

cytoskeletal remodeling [69].  

They all share a common sequence motif for guanine nucleotide binding which is 

a hallmark for all GTPases. Outside the GTP-binding motif, members of different family 

are related by varying degrees of functional sequences which specify a particular 

upstream/downstream effector. As expected with structural diversity, GTPases exhibit 

diverse range of functions. Members of the Arf and Sar1 family coordinate the  
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Figure 1-9. Schematic to represent both common and unique structural features of GTPases.  
 
Blackbars-guanine nucleotide binding and GTP hydrolysis; a-aliphatic residue; F-farnesyl 
chain; GG-geranylgeranyl chains; M-myristoyl chain; PH-pleckstrin homology 
 
biochemical machinery for vesicle budding, and the Rab, boasting of the largest family, 

controls protein-protein interactions during vesicle fusion.  

Small G-proteins contain an amino and carboxy terminal, which directs the 

protein to a specific location and an effector domain, for binding to effector proteins [70]. 

Another characteristic feature of small G-proteins is the presence of accessory factors. 

Major accessory factors include guanine nucleotide exchange factors and GTPase 

activating proteins. Another accessory protein is the GDP dissociating inhibitor [GDI] 

which sequesters inactive protein. Some of the GEFs and GAPs are protein-specific 

whereas others are same for a class of proteins. 

Mammalian Rho GTPases comprise of nearly 20 members among which only 

three are well characterized for cytoskeletal remodeling: Rho, Rac1 and Cdc42. Rho 

GTPases are governed by GEFs which catalyze exchange of GDP for GTP, by GAPs 

which activate the GTPase function and by GDIs which control the access of GTPases 

to GEFs and GAPs and also their access to membranes where active effectors reside 
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[71]. In early 90s, two Rho G-proteins Cdc42 and Rac1 were discovered to play key 

roles in GSIS and colocalized to insulin granule [72-75]. The activation kinetics of 

Cdc42 and Rac1 made clear that former was activated by glucose at an early time-point 

[76, 77]. Rho GTPases have also been shown to bind and be responsible for 

translocation of PI4P5Kinase and it has been shown that this kinase is important for 

preparing vesicles for fusion at the plasma membrane [78, 79].  

 

 

 

 

 

 

 

 

 

 

Figure 1-10. Modulatory roles of various classes of small G proteins and their 
accessory proteins in insulin secretion. Small G proteins, such as Rac1, Cdc42, and 
ARF-6 (and potentially Rho) regulate cytoskeletal reorgainzation and vesicular fusion in 
the pancreatic islet. Rab3A, Rab27A, and Rap1 play an essential role in docking and 
priming of secretory vesicles at the exocytotic sites. Glucose-mediated activation of 

From Kowluru A, Endocr Rev. 2010 Feb; 31(1): 52-78  
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these signaling proteins is under the fine control of various regulatory proteins including 
GDIs (e.g., Rho GDI and Cav-1) and GEFs (Tiam1, ARNO, and Epac2). 

Rab GTPases  have been reported to regulate different membrane trafficking 

pathways thorught their interaction with various effectors. Rab proteins are well-

conserved vesicle tetherers to target membranes. Sec4 is a Rab GTPase that was 

implicated to play a role in secretory process [80]. Among the Rab proteins, Rab3A [81] 

and Rab27A have been associated with pancreatic beta cells located on insulin 

granules [82, 83].  Kasai et al delineated the role for Rab in glucose signaling by 

studying intact and Rab-defective beta cells. They quantitated insulin secretion in ashen 

mice [mutated for Rab27a] which are known for defects in pigment granule transport. 

These animals were characterized by impeded GSIS, reduced number of docked 

granules and abnormal glucose-induced replenishment of granules in RRP [84]. 

Granuphilin, an effector of Rab, showed diminished interaction with syntaxin-1a in 

ashen islets. This suggests an impaired SNARE complex formation, the reason for 

abnormal granule trafficking [84]. 

 

 

 

 

Figure 1-11. Schematic representation of various small G-proteins that regulate vesicle 
transport as highlighted [85]. 
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Two other members of Ras-like GTPases, Rap1 and RalA, have been closely 

studied in beta cells with Rap1 being the first to be identified.  Leiser showed that 

stimulus-induced carboxylmethylation of Rap1 synced well with increased insulin 

secretion [86]. A GEF identified for Rap1 is Epac2 which mediates activation of Rap1 by 

cAMP in beta-cells. It is well-known that cAMP is a potentiator of GSIS and studies from 

islets of Epac2-/- mice proved that Epac2 is a selective agonist of cAMP-mediated fusion 

events. Another similar protein is RalA which mediates interaction with exocyst complex 

and thus aids in granule tethering and docking at plasma membrane [87]. Knockdown 

of RalA from INS-1 beta cells caused a reduction in depolarization-induced secretion of 

insulin and also a reduction in size of RRP. 

Arfs [ADP-ribosylation factors] have been widely implicated in vesicular 

organization. Arf was originally discovered as a cofactor for ADP-ribosylation of 

heterotrimeric G protein Gs [88]. Arf family is a highly conserved family from yeast to 

humans consisting of six members: Arf 1-6. Members of the family are classified into 

three classes based on sequence homology: Class I, Arf1-3; Class 2, Arf 4-5; Class 3, 

Arf6 [89]. They differ from other members of Ras superfamily by the absence of a 

carboxyl-terminal prenylation motif. Arfs are posttranslationally modified by the addition 

of myristoyl moiety on the amino-terminal glycine residue, which is essential for 

membrane association and function [90-21]. Arf proteins undergo similar GTP/GDP 

cycling with GTP-bound form conferring activity. GTP/GDP cycling is regulated by GEFs 

and GAPs as Arfs seems to have negligible GTPase activity [93]. With the help of X-ray 

crystallography, molecular structures for mammalian Arf1 and Arf6 were determined. In 

Arfs, GTP binds to regions called “switch” regions which as its name implies aids in 
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switching Arf from inactive to active conformation. Substrate specificity for Arf1 and Arf6 

is differentiated by the GTP-bound switch region. Compartment localization also 

determines the Arf that is activated.  Genetic studies performed in yeast revealed a role 

for Arf in vesicular transport [94]. Their participation in membrane trafficking events 

depends on recruitment of coat proteins, activation of lipid-modifying enzymes. Arf 

proteins localize to golgi apparatus and secretory granules, two organelles in-charge of 

organizing vesicles. Arf has been best characterized as an essential part of COP-coated 

vesicles which mediate intra-golgi traffic. Apparently Arf function is as necessary for 

transport to ER as it is for intra-Golgi transport. 

 

 

 

 

 

 

 

 

 

 

Figure 1-12. Schematic representation of typical Arf and Rab G proteins on a 
membrane. For the Rabs the extended hypervariable region (yellow) connecting the G 
protein to the lipid anchor allows bound effectors to move further from the bilayer than is 
the case for the Arfs [95]. 

 Most studied Arf members are Arf1 and Arf6 which regulate Golgi-associated and 

granule associated functions respectively. Arf1 in the active conformation binds to Golgi 

membranes. A mutant of Arf1 deficient of GTP-hydrolysis causes accumulation of ER-
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to-Golgi carrier vesicles in vivo. This indicates as much as GTP-binding is important, 

hydrolysis of bound GTP is equally necessary. 

 Arf6, on the other hand serves to maintain both exo- and endocytosis in 

secretory cells. It governs these above processes by translocating to the plasma 

membrane from where it can regulate vesicle traffic, cytokinesis and actin 

reorganization. Constitutively active mutants of Arf6 also cause accumulation of proteins 

in internal structures. Thus Arf6 plays an important role in spatio-temporal organization 

of proteins which is essential for activity.  

Some of the effects are due to regulation of PLD and PIP5K. Activation of PLD 

generates phosphatidic acid [PA] which in turn activates PIP5K. This results in 

production of PI-4,5-P2 which contribute to membrane trafficking events. There have 

been controversial reports implicating Arf6 in clathrin-dependent and –independent 

pathways [96, 97].  
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Figure 1-13. Image from D’souza-Schorey depicting a model for involvement of Arf-
dependent and –independent pathways [97]. 

In addition to membrane traffic, Arf6 also plays an important role in actin 

remodeling required for ruffle formation, cell migration, cell spreading and phagocytosis. 

Arf6 regulates actin remodeling through the activation of Rac1 and lipid metabolism.   

Modular GEFs for Arf 

 Small G-proteins are active in the GTP-bound form, which are catalyzed by the 

GEFs. In case of Arf proteins, the displacement of GDP by GTP causes displacement of 

N-terminal amphipathic helix and leads to interaction with membrane. From molecular 

analysis of various members of Arf-GEFs, it was found that they all share a catalytic 

domain, Sec7 domain [98]. Brefeldin A was initially used as target against Sec7 but was 

later found not to be effective against all Sec7 domains, especially for cytohesin family. 

Sec7 domain proteins also share high conservation from yeast to mammals. Along with 

GEF, Sec7 domain requires the presence of phospholipids to aid in guanine nucleotide 

exchange. How do phospholipids aid in this reaction? They serve to expose the N-

terminal helix which then allows the GEF to interact with Arf protein to add on a GTP.  

 Sec7-domain containing proteins are represented by four subfamilies: Gea/GBF 

[golgi-specific brefeldin A-rsistance factor], BIG [Brefeldin A-inhibited GEF], Cytohesin 

and EFA6. Of particular interest is the cytohesin family, which seems to play a role in 

activation of Arf6 for membrane trafficking events. Cytohesins gained further attention 

for the ability of their PH domains to bind specifically to PI(3,4,5)P3 and recruited to 

plasma membrane [99]. Cytohesins are again comprised of four members: cytohesin-1, 

ARNO, ARNO 3/GRP1 and cytohesin-4. The C-terminus of these proteins contains a 
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polybasic region which allows for phosphorylation by PKC. Phosphorylation of ARNO by 

PKC has shown to aid in cytoskeletal remodeling [100]. What then is a substrate for 

cytohesin? In an in vitro setting, cytohesins favor Arf1 as a substrate than Arf6 but in 

vivo, Arf6 is favored as a substrate [101, 102]. Overexpression of ARNO in HeLa cells 

induced changes in actin cytoskeletal structure as seen by the activation of Arf6 [103]. 

 Apart from the GEF activity, cytohesins have been found to play major roles in 

regulating cellular gene expression in response to extracellular signals and thus 

pathogens exploit this to alter cellular program. Most commonly reported signaling, is 

the involvement of cytohesin 1 and ARNO in the signaling of ERK1/2 [104-106]. In 

activation of T-cell, cytohesin-1 has been found to play a role in ERK1/2 activation since 

a dominant-negative cytohesin-1 abolished ERK1/2 activation. In a recent report 

demonstrated in liver cells, insulin resistance resulted from an inhibition of cytohesins by 

secinH3. Blockade of cytohesin in secinH3-fed mice showed increased expression of 

gluconeogenic genes, reduced glycolytic and fatty acid metabolic genes and a 

compensatory increase in plasma insulin [107]. 

Dyanmins: a new league of GTPases 

 Dynamins [108] belong to a novel group of GTPases comprising of three 

members: dynamin 1-3 [109-111]. As a family they share sequence homology in an 

amino-terminal GTPase domain responsible for guanine nucleotide binding and GTP 

hydrolysis. They differ strikingly from Ras GTPases by their higher intrinsic rates of 

GTP-hydrolysis. While the amino terminal is responsible for GTP-binding and 

subsequent hydrolysis, the presence of a proline-rich region is essential for effector 
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binding. Each of these domains carries some significance with regards to function [112]. 

First evidence for dynamin in recycling of vesicles was seen in Drosophila where 

temperature-sensitive alleles exhibited rapid paralysis. This was related to the aberrant 

recycling of synaptic vesicles from nerve terminals [113]. In recent observations, an 

identical neuronal protein to dynamin, dephosphin was found to aid in stimulus-

dependent dephosphorylation in nerve terminals. Dynamin is now a substrate for 

kinases, especially protein kinase C and casein kinase [114]. The phosphorylation cycle 

of dynamin is essential to regulate its GTPase activity for rapid endocytosis in nerve 

terminals.  

 This was verified in vivo in mammalian cells, using dynamin mutated for GTP 

binding and subsequent hydrolysis. Another mutant, with a completely truncated 

GTPase domain also inhibits endocytosis [115]. It also has an effector-binding domain. 

Thus dynamin plays an essential role in endocytosis [116], whether it plays a role in 

exocytosis is yet to be determined.  
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Chapter 2 

Materials and Methods 

2.1 Materials   

SecinH3 was from Tocris Biosciences [Ellisville, MO]. siRNA-Arf6 consisting of 

pools of three to five target-specific 19-25 nt siRNAs were from Santa Cruz 

Biotechnology [Santa Cruz, CA].  siRNA-ARNO was from Dharmacon [Lafayette, IL]. 

Antisera directed against Arf6, ARNO, ICMT, phospho- and total dynamin 1 were from 

Santa Cruz Biotechnology [Santa Cruz, CA]. Cdc42 and Rac1 antisera were from BD 

Biosciences [San Jose, CA]. Cdc42 and Rac1 activation kits were from Cytoskeleton 

Inc., [Denver, CO].  Phospho- and total antibodies for ERK1/2 and cofilin were 

purchased from cell signaling. Arf6 activation assay kit and the Classic Co-IP kit were 

from PIERCE [Rockford, IL]. siRNA-ICMT [43907710] and scrambled siRNA [negative 

control; 4390843] were from Ambion. AFC was from Cayman Chemical [63270]. ECL 

reagent was from GE Healthcare [RPN2132]. HiPerFect transfection reagent was 

obtained from Qiagen [301705]. The rat insulin ELISA kit was from American Laboratory 

Products [80-INSRTH-E01]. DCHFDA [35845], thapsigargin [T9033] and etoposide 

[E1383] were from Sigma Aldrich. Alexa-fluor 488 anti-rabbit secondary antibody 

[A11008], PLD assay kit [A12219] and Hoechst dye [3570] was from Invitrogen 

molecular probes. Cell proliferation kit [MTT, 11465007001] was purchased from Roche 

diagnostics. All other reagents used in these studies were from Sigma Aldrich Co. [St. 

Louis, MO] unless stated otherwise. 
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2.2 Insulin-secreting INS 832/13 cells, rat islets and human islets  

INS 832/13 cells were kindly provided by Dr. Chris Newgard (Duke University 

Medical Center, Durham, NC). The cells were cultured in RPMI 1640 medium containing 

10% heat-inactivated fetal bovine serum supplemented with 100 IU/ml penicillin and 100 

IU/ml streptomycin, 1 mM sodium pyruvate, 50 µM 2-mercaptoethanol, 11 mM glucose, 

and 10 mM HEPES (pH 7.4). Islets were isolated from pancreas of male Sprague-

Dawley rats (Harlan Laboratories, Oxford, MI), using collagenase digestion and a ficoll 

gradient as we described previously [117]. All experiments were reviewed and approved 

by the Wayne State University Institutional Animal Care and Use Committee. Human 

pancreatic islet lysates were kindly provided by Dr. Karl Olson [Michigan State 

University, Lansing, MI].  

Male [9-11 wks] ZDF and Zucker Lean control [ZLC] rats were procured from 

Charles River laboratories [Wilmington, MA] and maintained in a 12-h light/dark cycle 

with free access to water and food [Purina Diet no. 5008; Charles River Laboratories]. 

All animal protocols were reviewed and approved by the Wayne State University 

Institutional Animal Care and Use Committee. Hyperglycemia in diabetic rats was 

confirmed prior to sacrifice by tail vein puncture using Glucometer Elite from Bayer 

[Leverkusen, Germany]. Body weight of ZLC and ZDF rats were 300 ± 6 g and 396 ± 12 

g respectively [n=11; p <0.05]. Islets were isolated by collagenase digestion method 

[117].   

Human islets from normal and T2DM donors were obtained from Prodo 

Laboratories, Inc. [Irvine, CA]. Control islets [from a 54 year old male donor; 85-90% 
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purity] and diabetic islets [from a 45 year old male donor; ~60% purity] were 

homogenized with Tris-HCl buffer [50 mM, pH 7.4] containing sucrose [250 mM], EDTA 

[1 mM], DTT [1 mM], and protease inhibitor cocktail. Lysate proteins were resolved on 

12% SDS-PAGE, and used for Western blot analysis.   

2.3 Isolation of total particulate and soluble fractions from INS 832/13 cells and rat 

islets 

INS 832/13 cells were homogenized in RIPA buffer (50 mM Tris-HCl, pH 7.4, 1% 

NP-40, 0.25% sodium deoxycholate, 150 mM NaCl, 1mM EDTA, 1mM PMSF, 1mM 

Na3VO4, 1mM NaF and protease inhibitor cocktail) and were centrifuged at 105000 x g 

for 1 h to separate total particulate and soluble fractions. Proteins from individual 

fraction were resolved by SDS-PAGE and transferred to a nitrocellulose membrane. 

The blots were then probed with antibody raised against Arf6 [1:1000] or ARNO 

[1:1000] or ICMT [1:500 dilution] and probed with appropriate secondary antibody 

conjugated to horseradish peroxidase. Immune complexes were then detected using 

the enhanced chemiluminescence kit. 

2.4 Hydrophilic and hydrophobic phase partitioning method using triton X-114  

Total hydrophobic and hydrophilic phases of lysates derived from INS 832/13 

cells and pancreatic islets were separated using triton X-114 according to method 

described earlier by us [Veluthakal]. Briefly, about 400 µg of cell [INS 832/13 cell or 

islet] homogenate protein, prepared in 400 µl of buffer (20 mM Tris-HCl, pH 7.5, 0.5 mM 

EGTA, 2 mM MgCl2, 10 µg/ml leupeptin, and 2 µg/ml aprotinin), supplemented with 1 % 

(w/v) Triton X-114 was overlaid on 400 µl sucrose cushion 6 % (w/v) prepared in 20 mM 

Tris-HCl buffer (pH 7.4) containing 0.06 % (w/v) triton X-114. Following brief incubation 
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at 30 °C, samples were centrifuged at 300 x g  for 3 min and the aqueous phase was 

mixed with 0.5 % (w/v) fresh triton X-114 at 4 °C. F ollowing dissolution, the mixture was 

again overlaid on the same sucrose cushion, incubated for 3 min at 30 °C and 

centrifuged at 300 x g for 3 min. The lower hydrophobic phase was diluted to a final 

volume of 400 µl with homogenization buffer, while the aqueous phase was transferred 

into a separate tube supplemented with 2 % fresh triton X-114, incubated for 3 min at 30 

°C, and centrifuged at 300 x g without sucrose cushion. The supernatant obtained 

thereof served as total hydrophilic phase. The relative abundance of ARNO in 

hydrophilic and hydrophobic phases were determined by Western blotting. 

2.5 Transfection of Arf6 or ARNO mutants and siRNAs  

INS 832/13 cells were subcultured at 50-60% confluency and transfected using 

Effectene [Qiagen, Valencia, CA], with 0.2 µg of plasmid DNA constructs against either 

dominant-negative of Arf6 [T27N] or ARNO [E156K] per well of a 24-well plate. 

Endogenous Arf6 or ARNO or ICMT expression was depleted by transfecting cells using 

small interfering RNA [siRNA; 100 nM] using HiPerfect transfection reagent [Qiagen, 

Valencia, CA]. Efficiency of mutant expression or protein knockdown was determined by 

Western blotting.  

2.6 Insulin release studies 

Arf6 or ARNO mutant or siRNA-transfected or secinH3 inhibitor-treated cells 

were cultured overnight in low serum and low glucose containing medium and then 

stimulated either with high glucose, KCl or arginine in Krebs-Ringer bicarbonate buffer 

[KRB, pH 7.4] for different time intervals as indicated in the text.  In studies involving 
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KCl-induced insulin secretion, we noticed that INS 832/13 cells were not responsive to 

40 mM KCl in releasing insulin. However, higher KCl concentrations [60 mM] were 

found to elicit robust insulin release. Therefore, in KCl-stimulated insulin secretion 

[KSIS] studies, cells were incubated with 60 mM KCl in an osmolarity-balanced KRB 

medium [79]. For arginine [L-Arg]-stimulated insulin release, a stock solution was 

prepared in Tris.HCl [pH 7.4], and diluted to desired concentration with KRB. The insulin 

released into the medium was quantitated by ELISA [117]. 

2.7 Quantitation of Arf6.GTP in pancreatic β-cells 

Active Arf6 was quantitated by a pull-down assay. Briefly, the incubation medium 

was aspirated and cells were washed with ice-cold PBS. Cells were lysed with 500 µl 

lysis buffer and the lysate was clarified by centrifugation at 16,000 x g at 4 °C for 15 min 

and incubated ~400 µg protein with 100 µl of glutathione resin and 100 µg of GST-

GGA3-PBD beads at 4 °C for 1 hr with gentle rocking, following which the reaction 

mixture was spun at 6,000 x g for 30 sec. The GST-tagged beads were washed [3x] and 

proteins were separated by SDS-PAGE and activated Arf6 was identified by Western 

blotting. 

2.8 Quantitation of Cdc42 and Rac1 activation 

Relative degree of activated Cdc42 and Rac1 [i.e., GTP-bound form] were 

determined by p21-activated kinase-p21-binding domain pull-down assay as described 

in [117]. Briefly, INS 832/13 cells treated with either diluent or secinH3 [50 µM] or cells 

were either mock-transfected or transfected with ARNO-siRNA were cultured overnight 

in low serum-low glucose media. Cells were stimulated with either low [2.5 mM] or high 
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[20 mM] glucose for 3 or 30 min at 37 °C in the conti nued presence of either diluent or 

secinH3 with respect to inhibitor studies. The GTP-bound forms of Cdc42 and Rac1 in 

the pull-down samples were quantitated by Western blotting and densitometry.  

2.9 Co-immunoprecipitation studies 

Immunoprecipitation studies were performed using the Classic Co-IP kit as 

suggested by the manufacturer [118]. Briefly, β-cell lysates [500 µg protein] were 

incubated with anti-ARNO for 2 hr at 4 °C followed b y incubation with agarose resin for 

an additional 1 hr at 4 °C. Beads were washed; eluted  using sample buffer and proteins 

were resolved by SDS page to quantify Arf6.  

2.10 Immunofluorescence studies  

INS 832/13 cells were plated onto coverslips and incubated with [2.5 or 20 mM] 

glucose for 30 or 60 min at 37 °C as indicated in text,  followed by washing in PBS and 

fixed with 4% paraformaldehyde solution for 15 min at room temperature. They were 

then permeabilized with 0.2% Triton X-100 for 15 min at room temperature. After 

blocking with 1% BSA for 1 hr, the cells were further incubated with primary antibodies 

[Arf6 [1:150], ARNO [1:150], ICMT [1:150] and p-dynamin-1 [1:150] in 0.1% BSA 

solution for 1 hr. After extensive washes, the cells were further incubated with 

secondary antibodies Alexa-fluor 488 anti-mouse [1:1000], Alexa-fluor anti-goat 546 

[1:1000], Alexa-fluor anti-rabbit [1:1000] or Alexa-fluor anti-sheep 546 [1:1000] in 0.1% 

BSA solution for 1 hr at 37 °C.  Hoechst dye was used to  stain for nuclei. The coverslips 

were then mounted on glass slides containing mounting media [DAKO corporation, 
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Carpinteria, CA] and visualized under a confocal LSM 510 microscope in the midplane 

using a 63X oil-immersion lens [118]. 

2.11 Quantitation of PLD activity 

The Amplex Red phospholipase D [PLD] assay kit provides for a sensitive 

method of measuring PLD activity in vitro. An enzyme-coupled assay, PLD activity is 

measured by using Amplex Red reagent. First, PLD cleaves phosphatidyl choline [PC] 

to choline and PA. The choline generated is oxidized by choline oxidase to hydrogen 

peroxide. Finally, hydrogen peroxide along with horseradish peroxidase present in the 

reagent mix reacts with Amplex Red and generates highly fluorescent resorufin. We 

used the protocol for PLD enzyme activity at near neutral pH 8. Essentially treated cells 

were collected and lysate prepared in buffer [Tris 50 mM, pH 8.0]. Cells were broken by 

three freeze-thawing cycles and clarified to remove debris [unbroken cells]. Supernatant 

was used for protein estimation. 100 µg of lysate was made to 100 µL total volume and 

to which 100 µL of the prescribed reagent mix was added and incubated for 30 min at 

37 ºC. Fluorescence was measured in a microplate reader [Synergy Biotek instrument] 

at Ex 530 nm and Em 590 nm.  

2.12 Quantitation of ROS generation 

INS 832/13 cells or rat islets were treated with secinH3 and stimulated with 

glucose for 60 min. Following incubation, medium was removed, and cells were further 

incubated with DCHFDA [10 µM] at 37 ºC for 30 min in PBS. DCHFDA is a non-polar 

compound, diffuses rapidly into the cells and hydrolyzes cellular esterases into polar 

compound, 2’, 7’-dichlorofluorescein. In the presence of ROS, 2’, 7’-dichlorofluorescein 
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oxidizes readily to form fluorescent compound dichlorofluorescein. After 30 min, cells 

were washed with ice-cold PBS and harvested. Protein estimation was done and equal 

amounts of protein were added into 96-well black bottomed plates. Fluorescence was 

measured at Em 485 nm and Ex at 535 nm using luminescence spectrophotometer 

[Perkin Elmer]. 

2.13 Preparation of cell lysates for phosphoprotein analysis 

INS 832/13 cells or isolated islets were lysed in 50 mM Tris buffer pH 8.0 

containing 10 mM NaCl, 1% NP-40, 5% deoxycholic acid, 0.1% SDS, 1mM EDTA, 1mM 

PMSF, 10 µg/mL leupeptin, 10 µg/mL aprotinin, 5 mM EGTA, 5 mM EDTA, 10 mM NaF 

and 1 mM sodium orthovanadate. After incubation for 10 min in lysis buffer on ice, 

samples were clarified to remove debris and supernatant collected. Protein estimation 

was done using Pierce BCA 660 nm protein assay. Equal amounts of protein was 

loaded and separated by SDS-PAGE. Resolved proteins were transferred onto 

nitrocellulose membrane and probed for phosphoproteins as indicated in text.  

2.14 Caspase-3 activity 

Activation of caspase-3 was assessed in cells either transfected with ICMT 

siRNA or in cells treated with AFC. Cells were harvested and homogenized in sample 

buffer (0.5 % Nonidet P-40, 20 mM HEPES, pH 7.4, 100 mM NaCl and 20 mM DTT and 

PIC).  And ~30 µg of proteins were resolved by SDS-PAGE (12%) and immunoprobed 

for caspase-3. Activation of caspase-3 is evidenced by the presence of a hydrolytic 

product (~17 kDa). Etoposide (60 µM, 6 h) was used as a standard for apoptotic cell 

death. 
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2.15 Cell viability assay 

INS 832/13 cells were either treated with AFC (100 µM, 1 h) or transfected with 

ICMT -specific or scrambled siRNA as described above.  Cell viability was determined 

by incubating AFC treated or ICMT-siRNA transfected cells with 10 µL of stock MTT [4, 

5-dimethylthiazol−2-yl) −2, 5-diphenyl tetrazolium bromide] for 4 h at 37˚C. Following 

dissolution of formazan crystals in solubilization solution, the absorbance was measured 

at 570 nm using ELISA plate reader.   

2.16 ICMT expression profile 

INS 832/13 cells were plated in six-well plates, grown to 70 % confluence and 

treated with low glucose (2.5 mM), high glucose (50 mM), palmitic acid (300 µM), 

palmitic acid plus high glucose for 48 h or thapsigargin (0.5 µM) for 9 h. Cells were then 

harvested and centrifuged. The pellet was resuspended in buffer solution [0.5 % 

Nonidet P-40, 20 mM HEPES, pH 7.4, 100 mM NaCl, 20 mM DTT and protease 

inhibitor cocktail]. Equal amount of proteins were resolved by SDS-PAGE and 

transferred to a nitrocellulose membrane. The blots were then probed with antibody 

raised against ICMT [1:500 dilution] and with rabbit secondary antibody conjugated to 

horseradish peroxidase. Immune complexes were then detected using the enhanced 

chemiluminescence kit. 

2.17 Statistical analyses 

The statistical significance of the difference between the experimental conditions 

was determined by Student’s t test unless mentioned otherwise. p values < 0.05 were 

considered significant.  
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CHAPTER 3 

ARNO/Arf6 signaling cascade is involved in nutrient-induced insulin secretion 

from the pancreatic beta cell. 

 
• Portions of this work have been published [copy of the published manuscript is 
     appended]. 

Jayaram B, Syed I, Kyathanahalli CN, Rhodes CJ, Kowluru A. Arf nucleotide binding 

site opener [ARNO] promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin 

secretion in INS 832/13 β-cells and rat islets. Biochem Pharmacol. 2011 Apr 15; 

81(8):1016-27. Epub 2011 Jan 26. 

 
ARNO/Arf6 signaling cascade is involved in nutrient-induced insulin secretion 

from the pancreatic beta cell 

Homeostasis of blood glucose is a highly regulated process maintained by 

various hormones, nutrients and neurotransmitters. Of significance is the contribution of 

peptide hormone, insulin, which coordinates signals to effectively maintain blood 

glucose.  The primary pathway for secretion of insulin from within large dense core 

granules involves coupling of glucose metabolism and other factors which lead to 

depolarization of plasma membrane thus preparing it for fusion of granules. Influx of 

Ca2+ has always been the fort for insulin secretion. Recent years of research have 

identified many of the molecular players responsible for vesicular transport after influx of 

Ca2+, but it never stops there. There are still many signaling molecules like 

phospholipases, kinases, phophatases, actin-modifying agents and finally G-proteins. 

Extensive studies in the area of small G-proteins have established a role in 

regulating various cellular functions including proliferation, survival and demise. So far, 
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four major classes of small G-proteins have been identified in the pancreatic β-cell. 

These include the Ras, Rho, Rab and ADP-ribosylation factor [Arf] family of G-proteins 

[69]. The Ras family is responsible for signal transduction in cellular differentiation and 

proliferation, Rho family regulate actin cytoskeleton and Rab family aid in 

priming/docking of secretory vesicles.  For decades, the Arf family has been studied in 

relation to cellular growth and secretion in several cell types. Yet its potential in the 

pancreatic beta cell was untapped. Though originally identified as an ADP-ribosylator 

for cholera toxin, Arf has gained much importance as a critical modulator of membrane 

traffic in eukaryotic cells. Among the six members of the Arf family, Arf1 has been the 

paradigm for intracellular vesicular trafficking by regulating budding via recruitment of 

coat proteins. Initial evidence for involvement of Arf1 in secretory process came from 

yeast genetic studies where a deletion of Arf gene led to a secretory defect in 

Saccharomyces cerevisiae [119]. Another member, Arf6 is also a well documented 

protein for its positive modulatory roles in trafficking of secretory granules to the plasma 

membrane for exocytosis [120]. Regazzi and coworkers first described localization and 

regulation of Arfs in insulin-secreting RINm5f cells [72, 73]. More recently, Lawrence 

and Birnbaum have demonstrated regulatory roles for Arf6 in insulin secretion mediated 

by glucose, GTPγS and membrane depolarization. They further demonstrated that Arf6 

regulates insulin secretion by maintaining plasma membrane phosphatidylinositol 4, 5-

biphosphate [PIP2; Lawrence PNAS]. Existing evidence also supports a potential role for 

PLD in physiological insulin secretion [121-123].  

Arf6 cycles between the GDP-bound [inactive] and GTP-bound [active] 

configurations; which are tightly regulated by two distinct classes of regulatory factors 
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namely the GTPase activating proteins [GAP] and the GTP/GDP exchange factors 

[GEF; 95; 124]. GAPs inactivate Arf6 by promoting its conversion to the inactive GDP-

bound form, while GEFs facilitate its activation. The GEF activity is a rate-defining step 

and involves coordination of multiple intracellular signals. In this context, many GEFs 

with distinct size and structure have been identified for Arf6 [102, 125, 126]. However, 

in the majority of the signaling events, only one member belonging to the cytohesin 

family has been closely linked to activate Arf6 [127, 128].  

Arf6 and ARNO are present in pancreatic beta cells: subcellular view 

Thus the first goal of this project was aimed at establishing a positive 

involvement for Arf6 and its exchange factor ARNO in regulated insulin secretion. Galas 

MC demonstrated a potential role for Arf6 associated with secretory granule in 

chromaffin cells [120]. As an initial step, we immune-characterized Arf6/ARNO in 

pancreatic beta cells: INS 832/13 cells, rat and human islets. Figure 3-1 A clearly 

shows the presence of Arf6 and ARNO in the various pancreatic beta cells. It is well-

reported that small G-proteins, including Rho family i.e Cdc42 and Rac1, are cytosolic in 

distribution and translocate to membranous sites on activation [129]. Unlike most smgs, 

Arf6 was predominantly localized to membranous fraction. Data in Figure 3-1 B 

demonstrates cytosol/membrane abundance of Arf6 and ARNO in clonal pancreatic 

beta cells and rat islets. As reported in other neuroendocrine cells, Arf6 was abundant in 

membranous fraction and ARNO in cytosol.  

As the total membrane fraction derived from the single step centrifugation 

technique would comprise of membranes derived from various intracellular organelles 
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[secretory granules, mitochondria, microsomes], we studied the intracellular distribution 

of both Arf6 and ARNO via differential centrifugation. Subcellular fractionation in 

cultured chromaffin cells revealed Arf6 to be bound to secretory granule membrane. 

Figure 3-1 C indicates a similar pattern in INS 832/13 cells.  
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Figure 3-1: Expression of ARNO in INS 832/13 cells, rat islets and human islets 

Panel A: Lysates from rat islets, human islets and INS 832/13 cells were separated by 
SDS-PAGE and probed for Arf6 [18 kDa] and ARNO [48 kDa].  

Panel B: Lysates from rat islets and INS 832/13 cells were separated into cytosolic 
[Cyt] and membranic [Mem] fraction by a single-step centrifugation. Proteins were 
separated by SDS-PAGE and probed for Arf6 and ARNO.  

Panel C: Lysates from INS 832/13 cells were differentially centrifuged into various 
subcellular fractions: Cytosol [Cyt], mitochondria [Mito], secretory granules [SG] and 
microsomes [Micro] and proteins were separated by SDS-PAGE. Blot was probed for 
Arf6 and ARNO.  

Panel D: INS 832/13 cells were serum-starved and further stimulated with low [2.5 mM] 
glucose and high [20 mM] glucose for 30 min. Lysates were separated into cytosolic 
and membranic fractions by single-step centrifugation and proteins were separated by 
SDS-PAGE. Blot was probed for Arf6.  
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Panel E: Hydrophilic [Aqueous] and hydrophobic [Lipid] phases of the homogenates 
from rat islets and INS 832/13 cells were isolated using triton X-114 partition technique 
[see Methods for additional details]. Proteins were separated by SDS-PAGE and probed 
for Arf6 and ARNO. A representative blot from three independent experiments is shown 
here. 

Among the various cellular organelles, Arf6 is found to be predominantly 

associated with secretory granule and ARNO in the cytosolic fraction. This adds to the 

fact that Arf6 might regulate stimulated-insulin secretion through priming/docking of 

granules. Even though Arf6 is abundant in membranous fraction, some amount of free 

Arf6 is found in cytosol. Bands seen in cytosol/membrane fraction reveal the presence 

of two bands for Arf6. This could be explained by a possible post-translational 

modification of Arf6 protein which aids it to bind to granule membranes. And in evidence 

to this in chromaffin cells, granule-bound Arf6 displayed two spots on a 2D gel 

electrophoresis, the two spots different only in isoelectric points but of same molecular 

weight [120]. Sucrose density gradient centrifugation performed in chromaffin cells to 

separate plasma membrane and secretory granules clearly showed the translocation of 

Arf6 from granule fraction to plasma membrane upon stimulation. INS 832/13 cells were 

stimulated with insulinotropic concentrations of glucose and lysates were separated into 

cytosol and membrane by single-step centrifugation. Data in Figure 3-1 D clearly 

indicates an increased amount of Arf6 localized to membrane fraction upon glucose 

stimulation as compared to control. In another approach, to determine whether Arf6 and 

ARNO preferred the hydrophilic/hydrophobic compartment in a phase partitioning 

assay, we used Triton X-114. As a characteristic property of nonionic detergents, Triton 

X-114 is homogeneous at 0 ºC but separates into an aqueous and detergent phase at 

greater than 20 ºC. The assay makes use of the principle that integral membrane 

proteins interact directly with the lipid bilayer by a hydrophobic domain. Triton X-114 
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essentially mimics the lipid bilayer thus causing integral membrane proteins to separate 

into the hydrophobic phase. Phase partitioning experiment clearly indicates that both 

Arf6 and ARNO are loosely-bound and not integral membrane proteins [Figure 3-1 E]. 

Expression of a dominant negative mutant of Arf6 and ARNO inhibits GSIS 

Localization studies intrigued us to believe that Arf6 was an essential component 

of catecholamine-secretion as demonstrated in chromaffin cells. Furthermore, a 

synthetic myristoylated peptide of Arf6 blocked catecholamine secretion and PLD 

activation. These blocking peptides demonstrated the fact that myristoylation, a post-

translational modification, was essential for regulated-secretion, but it does not exhibit 

any functional evidence for involvement of GTP-bound Arf6 in secretion [120]. 

Therefore to verify the role for Arf6 in GSIS, we used the more conventional GTP-

binding deficient mutant, Arf6-T27N. The dominant negative Arf6 [DN-Arf6] mutant lacks 

the inherent ability to bind GTP which switches the protein to the active conformation. 

Lawrence and Birnbaum have demonstrated earlier that DN-Arf6 blocks both 

depolarization- and GTPˠS-induced secretion in MIN6 cells [79]. As a logical step to 

validate our hypothesis, we tested the effect of DN-Arf6 or DN-ARNO in GSIS.  Figure 

3-2 A indicates expression levels of Arf6 or ARNO mutants in INS 832/13 cells either 

mock-transfected or transfected with plasmid mutants as indicated. Cells 

overexpressing either DN-Arf6 or DN-ARNO were assayed for insulin release in the 

presence of 2.5 or 20 mM glucose. Data in Figure 3-2 B showed a marked reduction in 

GSIS in cells expressing Arf6-T27N. Likewise, overexpression of ARNO-E156K, a 

mutant lacking the GEF function, significantly inhibited GSIS in these cells [Figure 3-2 
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C]. Together, these data suggested key roles for Arf6 and ARNO in signaling events 

leading to GSIS. 
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Figure 3-2: Overexpression of inactive mutants markedly inhibits glucose-
induced insulin secretion in INS 832/13 cells 

Panel A: INS 832/13 cells were mock-transfected or with either dn Arf6/ARNO (see 
Methods). Overexpression of Arf6/ARNO was verified by Western blotting. A 
representative blot from three independent studies yielding similar results is provided 
here. 

Panel B: INS 832/13 cells were transfected with dominant negative Arf6 [T27N] at a 
final concentration of 0.2 µg of DNA and cultured for 48 hr. Following this, cells were 
stimulated with either low [2.5 mM] or high [20 mM] glucose in KRB for 30 min at 37°C. 
Insulin released into the media was quantitated and expressed as ng/mL. Data are 
mean ± SEM from three independent experiments.  * represents p < 0.05 vs. mock low 
glucose; **p < 0.05 vs. mock transfected cells treated with high glucose, and data points 
with similar symbol did not differ significantly. 

Panel C: INS 832/13 cells were transfected with dominant negative ARNO [E156K] at a 
final concentration of 0.2 µg of DNA and cultured for 48 hr following which cells were 
stimulated with either low [2.5 mM] or high [20 mM] glucose for 30 min at 37°C. Insulin 
released into the medium was quantitated and expressed as ng/mL. Data are mean ± 
SEM from three independent experiments. * represents p < 0.05 vs. mock transfected 
low glucose and **p < 0.05 vs. mock transfected high glucose, and data points with 
similar symbol do not differ significantly.  
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Silencing of endogenous Arf6 or ARNO attenuates insulin release by various 

insulin secretagogues in INS 832/13 cells 

Next, we verified if knockdown of endogenous Arf6 and ARNO by using siRNA 

affects insulin secretion elicited by high glucose.  We observed 50-60% reduction in the 

expression of Arf6 or ARNO by Western blotting analysis [Figure 3-3 A]. Under these 

conditions, GSIS was significantly inhibited in Arf6- and ARNO-knocked-down cells 

[Figure 3-3 B and C].  Together, data in Figure 3-2 and 3-3 implicated Arf6/ARNO 

signaling axis in GSIS.  

In order to test the possibility that inhibition of GSIS by deficient Arf6/ARNO 

function is due to a block in coupling of glucose metabolism to secretion, we tested the 

effect of siRNA-Arf6/-ARNO in depolarization-induced insulin secretion. Since work has 

been done in MIN6 cells, demonstrating the involvement of Arf6 in depolarization-

induced secretion, we chose to study the effect of siRNA-ARNO in depolarization 

induced by high K+. The next series of studies, essentially determined potential roles of 

Arf6 or ARNO in insulin secretion elicited by a membrane-depolarizing concentration of 

KCl or arginine.  In case of arginine, depolarization is thought to result  in  some part  

from  the  entry  of the  positively  charged  amino  acid per  se but  with  a clear  

glucose dependency  and not by  closure of KATP channels [130]. To address this, INS 

832/13 cells were transfected with either siRNA-Arf6 or siRNA-ARNO, and insulin 

secretion in the presence of KCl [60 mM; Figure 3-3 D] or arginine [20 mM + 1 mM 

glucose; Figure 3-3 E and F] was quantitated. Data depicted in Figure 3-3 [Panels D-

E] demonstrated that insulin secretion elicited by KCl or arginine was inhibited in cells in 

which endogenous Arf6 or ARNO was knocked-down.  
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Figure 3-3: siRNA-Arf6/-ARNO markedly inhibits glucose-induced insulin 
secretion in INS 832/13 cells 

Panel A: INS 832/13 cells were mock-transfected or transfected either with Arf6-
siRNA/ARNO siRNA as described in the Methods section. Expression of Arf6/ARNO 
was verified by Western blotting. A representative blot from three independent studies 
yielding similar results is provided here. 

Panel B: INS 832/13 cells were either mock-transfected or transfected with Arf6-siRNA 
at a final concentration of 100 nM. After 48 hr culture in regular medium, cells was 
stimulated with low [2.5 mM] or high [20 mM] glucose for 30 min. Insulin released into 
the medium was quantitated and expressed as ng/mL. Data are mean ± SEM from 
three independent experiments.  * represents p < 0.05 vs. mock low glucose; **p < 0.05 
vs. mock transfected cells treated with high glucose, and data points with similar symbol 
did not differ significantly. 

Panel C: INS 832/13 cells were either mock-transfected or transfected with ARNO-
siRNA at a final concentration of 100 nM. After 48 hr culture in regular medium, cells 
were stimulated with low [2.5 mM] or high [20 mM] glucose for 30 min. Insulin released 
into the medium was quantitated and expressed as ng/mL. Data are mean ± SEM from 
five independent experiments.  *represents p < 0.05 vs. mock transfected low glucose; 
**p < 0.05 vs. mock transfected high glucose. Insulin release values between mock low 
glucose or siRNA transfected low glucose did not differ significantly.  

Panel D: INS 832/13 cells were either mock-transfected or transfected with ARNO-
siRNA at a final concentration of 100 nM. After 48 hr culture in regular medium, cells 
were stimulated with low [2.5 mM] or K+ [60 mM] for 60 min. Insulin released into the 
medium was quantitated and expressed as ng/mL. Data are mean ± SEM from three 
independent experiments.  *represents p < 0.05 vs. mock-transfected low glucose; **p < 
0.05 vs. mock transfected K+. Insulin release values between mock low glucose or 
siRNA transfected low glucose did not differ significantly. 

Panel E & F: INS 832/13 cells were mock-tranfected or transfected either with Arf6-
siRNA/ ARNO-siRNA at a final concentration of 100 nM. After 48 hr culture in regular 
medium, cells were stimulated with 1 mM glucose [Glu] or 1 mM glucose + 20 mM L-
arginine [L-Arg] for 15 min. Insulin released into the medium was quantitated and 
expressed as percent of control. Data are mean ± SEM from replicates.  * represents p 
< 0.05 vs. mock-transfected 1 mM glucose; **p < 0.05 vs. mock-transfected 1 mM Glu + 
20 mM L-Arg. Insulin release values between mock 1 mM Glu or siRNA transfected 1 
mM Glu did not differ significantly.  
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Together, data described in Figure 3-3 implicate regulatory roles for ARNO/Arf6 

in insulin secretion elicited by a variety of secretagogues.  

 Stimulation with secretagogues changes Arf6 to active state 

Like every other small GTPases, the guanine nucleotide-bound state regulates 

Arf6 function [131, 132]. With no exception, GTP-bound Arf6 confers “activity” and 

enables it to interact with effectors. To further understand the role of Arf6 in stimulus-

coupled secretion, we examined whether insulinotropic concentrations of glucose/K+ 

activates Arf6 in the β-cell. This was accomplished by using a recently developed GST-

GGA3 pull-down assay, which utilizes GGA proteins to capture activated forms of Arf6 

by interacting with the Arf-binding domain [133]. Efficiency and specificity of the 

activation assay was confirmed by the ability of GTPγS to stimulate Arf6 activation in 

broken cell preparations [Figure 3-4 A]. A time-course study for Arf6 activation by 

glucose/K+ [Figure 3-4 B and C] suggested that glucose-induced activation was seen 

as early as 1 min and reached optimum at 3 min time point. Even though, we noticed a 

reduction in activated Arf6 at 5 min time point, Arf6 remained active [Arf6.GTP] above 

basal till 30 min [additional data not shown]. Together, these data suggest that Arf6 

activation might represent one of the early signaling steps leading to GSIS. 
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Figure 3-4: Time-dependent activation of Arf6 by glucose in pancreatic β-cells 

Panel A: Lysates from INS 832/13 cells were incubated with either GDP or GTPˠS. 
Cell lysates were used for detecting activated Arf6 [Arf6.GTP] by GST-GGA3-PBD pull 
down assay [see Methods]. Total Arf6 was used as the loading control and a 
representative blot from three independent experiments is shown.  

Panel B: INS 832/13 cells were incubated with KRB for 1 hr and either left unstimulated 
[diluent] or stimulated with high glucose [20 mM] or K+ [60 mM] for different time points 
as indicated. Cell lysates were used for detecting activated Arf6 [Arf6.GTP] by GST-
GGA3-PBD pull down assay [see Methods]. Total Arf6 was used as the loading control 
and a representative blot from three independent experiments is shown.  

Panel C: Densitometric quantitation of Arf6 activation depicted in Panel B is shown 
here.  * represents p < 0.05 vs. diluent. Statistical analysis was performed using One-
way ANOVA, All pairwise multiple comparison method (Dunnetts’). 

 

SecinH3 markedly attenuates GSIS in INS 832/13 cells and rat islets 

Recently, Hafner et al., reported a small molecule inhibitor, secinH3, which 

selectively blocks ARNO-mediated activation of Arf6 [107]. The inhibitor was tested for 

its antagonistic potential against other members of Arf family and Rho GTPases [134]. 

SecinH3 showed a higher affinity towards ARNO and in particular inhibited the ARNO-

catalyzed activation of Arf6. Previous studies have utilized secinH3 to determine the 

regulatory roles for ARNO/Arf6 signaling in cellular signal transduction [135, 136]. As a 

logical extension to the above studies, we evaluated the potential impact of 

pharmacological inhibition of ARNO on GSIS in INS 832/13 cells and in normal rat 

islets. It should be noted that inhibitory effects of secinH3 on GSIS [Figure 3-5] or Arf6 

activation [Figure 3-6] were not due to its cytotoxic effects since we noticed no 

significant effects of this inhibitor on the metabolic cell viability of β-cells under these 

conditions [Figure 3-5 C]. Data in Fig 3-5 demonstrated complete inhibition of GSIS by 

secinH3 in INS 832/13 cells [Panel A] and normal rat islets [Panel B]. Under these 
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conditions secinH3 failed to increase basal secretion in either INS 832/13 cells or rat 

islets [Figure 3-5 A and B]. Together, these pharmacological data confirm the above 

molecular biological data to support our hypothesis that ARNO/Arf6 signaling cascade 

plays a positive modulatory role in GSIS.  
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Figure 3-5: SecinH3, a selective inhibitor of ARNO attenuates GSIS in INS 832/13 
cells and normal rat islets 

Panel A: INS 832/13 cells were incubated in low serum-low glucose overnight in the 
continuous presence of 50 µM secinH3 or diluent and stimulated with either low [LG, 2.5 
mM] or high glucose [HG, 20 mM] for 30 min in KRB. Insulin released into the medium 
was quantitated by ELISA and expressed as ng/mL. Data are mean ± SEM from four 
independent experiments.     * represents p < 0.05 vs. low glucose without secinH3; **p 
< 0.05 vs. high glucose without secinH3 and data points with similar symbol do not differ 
statistically.   

Panel B: Normal rat islets were incubated in low serum-low glucose overnight in the 
continuous presence of either 50 µM secinH3 or diluent and stimulated with either low 
[LG, 2.5 mM] or high glucose [HG, 20 mM] for 30 min in KRB. Insulin released into the 
medium was quantitated by ELISA. Data are expressed as ng/mL insulin released and 
are mean ± SEM from four independent experiments. * represent p < 0.05 vs. low 
glucose with secinH3 and without secinH3; and **p < 0.05 vs. high glucose without 
secinH3. Data points with similar symbol do not differ significantly. 

Panel C: INS 832/13 cells were incubated in the presence or absence of secinH3 [20 or 
50 µM] for 15 hr. Metabolic cell viability was determined using MTT assay [methods]. 
The data indicated a modest inhibition of ~13% in cells treated with maximum 
concentration of inhibitor. Data are expressed as percent of control [mean ± SEM].  

 

ARNO activates Arf6 in pancreatic beta cells 

The conversion of the GDP-bound inactive forms of G-proteins to their GTP-

bound active state is mediated by GEFs. ARNO is one of the four related proteins in the 

cytohesin family of Arf-GEFS. They share a ~70% identity with one another. To 

investigate the possibility that ARNO plays a role in glucose-mediated activation of Arf6, 

we undertook the following two complementary methods. In the first, glucose-induced 

activation of Arf6 was examined in cells in which ARNO expression was reduced by 

siRNA-ARNO.  Data in Figure 3-6 A and B indicated complete inhibition of glucose-

induced activation of Arf6 under these conditions. This was further verified by a second 

approach involving pharmacological inhibition of ARNO/Arf6 signaling by secinH3 [107]. 

Data in Figure 3-6 C and D suggested a complete inhibition of glucose-induced 
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activation of Arf6 by secinH3. Taken together, these data indicate that glucose-induced 

activation of Arf6 requires the intermediacy of ARNO. 
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Figure 3-6: Molecular biological or pharmacological inhibition of ARNO 
attenuates glucose-induced activation of Arf6 in INS 832/13 pancreatic β-cells 

Panel A: INS 832/13 cells were either mock-transfected or transfected with siRNA-
ARNO and cultured for 48 h following which cells were stimulated in the presence of 
either low glucose    [LG, 2.5 mM] or high glucose [HG, 20 mM] for 30 min at 37°C.   The 
relative amounts of activated Arf6 [i.e, Arf6.GTP] were determined by pull down assay. 
Total Arf6 from cell lysates was used as the loading control and a representative blot 
from three independent experiments is shown.  

Panel B: Data shown in the panel A were analyzed densitometrically and expressed as 
fold change in Arf6.GTP over basal and are mean ± SEM of three independent 
experiments.            * represents p < 0.05 vs. mock transfected low glucose; **p < 0.05 
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vs. mock transfected high glucose, and data points with similar symbol do not differ 
statistically.  

Panel C: INS 832/13 cells were incubated overnight in the presence or absence of 
secinH3 [50 µM] and stimulated with either low glucose [LG, 2.5 mM] or high glucose 
[HG, 20 mM] in the continuous presence or absence of secinH3 [50 µM] for 30 min. 
Relative degrees of Arf6 activation was quantitated as described in Panel A. Total Arf6 
from cell lysates was used as the loading control and a representative blot from three 
independent experiments is shown.  

Panel D: Data shown in the Panel C are analyzed densitometrically and expressed as 
fold change in Arf6.GTP over basal. Data are mean ± SEM from three independent 
experiments.       * and # represents p < 0.05 vs. low glucose without secinH3; and ** p < 
0.05 vs. high glucose without secinH3.  

 

Glucose promotes association between Arf6 and ARNO in pancreatic β-cells 

Then, I examined the ability of ARNO to interact physically with Arf6 in response 

to glucose. To investigate this interaction, I utilized co-immunoprecipitation and 

immunofluorescence approaches on β-cells exposed to an insulinotropic concentration 

of glucose. In our system, activation of ARNO was evidenced by a substantial increase 

in the amount of Arf6 coupled to ARNO in pancreatic beta cells when stimulated with 

glucose. Data shown in Figure 3-7 A indicate detectable levels of Arf6 in ARNO 

immunoprecipitates suggesting that these two proteins stay complexed under basal 

conditions. Moreover, incubation of these cells with stimulatory glucose resulted in a 

significant increase [~2-fold] in the amount of Arf6 in the ARNO immunoprecipitates 

[Figure 3-7 B]. Together, these data suggest that glucose promotes physical 

association between ARNO and Arf6 in insulin-secreting cells. We verified these 

findings via a complementary immunofluorescence approach. Data in Figure 3-7 C 

suggested that both Arf6 [green] and ARNO [red] remain diffused throughout the cell 

under basal conditions [2.5 mM glucose]. Merged images of subpanels a and b in 
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Figure 3-7 C [i.e., subpanel c] further suggested that the two proteins remain localized 

in the cytosolic compartment. However, exposure of these cells to a stimulatory 

concentration of glucose [20 mM] led to a significant association of these proteins as 

evidenced in the merged images of subpanels d and e of Figure 3-7 [i.e., sub-panel f]. 

Together, these findings [Figure 3-7] provide evidence for increased association of Arf6 

and ARNO in the presence of glucose leading to the activation of ARNO/Arf6 signaling 

pathway culminating in insulin secretion.  
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Figure 3-7: Glucose promotes association between Arf6 and ARNO in INS 832/13 
cells 

Panel A: Coimmunoprecipitation studies: Herein, INS 832/13 cells were incubated in 
the presence of low glucose [LG, 2.5 mM] or high glucose [HG, 20 mM] for 30 min at 
37°C. ARNO was immunoprecipitated in the lysates using a  specific antibody as 
described in Methods. The immunoprecipitates were separated by SDS-PAGE and 
probed for Arf6. A representative blot from three studies is shown.  

Panel B: Data from multiple studies shown in Panel A are analyzed densitometrically 
and  expressed as densitometric units and are mean ± SEM. * represents p <0.05 vs. 
low glucose.  

Panel C: Immunofluorescence studies using confocal microscopy: INS 832/13 
cells were cultured on coverslips and cultured overnight prior to the incubation with 
either 2.5 mM or 20 mM glucose for 30 min at 37°C.  T he cells were fixed in 4% 
paraformaldehyde solution in PBS for 15 min and permeabilized using 0.2% triton X-100 
for 15 min. Fixed cells were examined for Arf6 [stained in green] and ARNO [stained in 
red] as described under Methods. 
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Chapter 4 

Potential down-stream signaling events such as activation of effector proteins 

involved in ARNO/Arf6 signaling and posttranslational modification of small G-

proteins in pancreatic beta- cells 

• Portions of this work have been published, or have been submitted for 
          publication [copies of the published/submitted manuscripts are 

     appended]. 

Jayaram B, Syed I, Kyathanahalli CN, Rhodes CJ, Kowluru A. Arf nucleotide binding 

site opener [ARNO] promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin 

secretion in INS 832/13 β-cells and rat islets. Biochem Pharmacol. 2011 Apr 15; 

81(8):1016-27. Epub 2011 Jan 26. 

 

Jayaram B, Syed I, Singh A, Subasinghe W, Kyathanahalli CN, Kowluru A. 

Isoprenylcysteine carboxyl methyltransferase facilitates glucose-induced Rac1 

activation, ROS generation and insulin secretion in INS 832/13 β-cells. Islets. 2011; 

3(2):48-57. Epub 2011 Mar 1. 
 
 

Active Arf6 regulates putative downstream effectors in the events leading to 

insulin release 

Arf6 GTPase has a dual role in cells, regulating membrane traffic and organizing 

cortical actin. Many of its downstream effectors include lipid-modifying enzymes, actin 

remodelers, kinases and also other small G-proteins. As such, I investigated a number 

of potential effectors either using siRNA-ARNO or secinH3 inhibitor. 
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Nm23H1 may act as local supplier of GTP for Arf6 

In cancer biology, nm23H1 is termed as “tumor metastasis suppressor” and is an 

important modulator of tumor invasion. An article by Palacios F in Nature Cell biology 

demonstrated a cross-talk between Arf6 and nm23H1 in epithelial cells during adherens 

junction disassembly caught our attention [137]. Second, there were intriguing 

observations which suggested that NDP kinase can act as a local GEF, for GTPases 

[138].  So I investigated whether nm23H1 had any effect on levels of Arf6-GTP as Arf6 

seemed to be constitutively active for almost 30 min [Chapter 3]. I investigated this by 

silencing nm23H1 using siRNA and studied the levels of Arf6-GTP upon glucose 

stimulation by pull-down assay. Interestingly, cells transfected with nm23H1-siRNA (si-

nm23H1) showed a reduced level of Arf6-GTP [Figure 4-1]. This was consistent with 

our hypothesis that nm23H1 might act as a localized GEF for Arf6, thus providing a 

constant supply of GTP at the plasma membrane where active Arf6 is required to 

regulate downstream effectors.  
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Figure 4-1: Molecular biological inhibition of nm23H1 attenuates glucose-induced 
activation of Arf6 in INS 832/13 pancreatic β-cells 

Panel A: INS 832/13 cells were either mock-transfected or transfected with siRNA-
nm23H1 (i.e., si-nm23H1) and cultured for 48 h following which cells were stimulated in 
the presence of either low glucose    [LG, 2.5 mM] or high glucose [HG, 20 mM] for 30 
min at 37°C.   The relative amounts of activated Arf6 [i.e., Arf6.GTP] were determined by 
pull down assay. Total Arf6 from cell lysates was used as the loading control and a 
representative blot from three independent experiments is shown.  

Panel B: Data shown in the panel A were analyzed densitometrically and expressed as 
fold change in Arf6.GTP over basal and are mean ± SD from two independent 
experiments. * represents p < 0.05 vs. mock transfected low glucose; **p < 0.05 vs. 
mock transfected high glucose. 
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Arf6/ARNO affects the activation of Rho family of GTPases 

Several recent studies, including our own, have implicated Rho subfamily of 

small G-proteins [e.g., Cdc42 and Rac1] in cytoskeletal remodeling leading to the 

translocation of insulin-laden secretory granules to the plasma membrane for fusion and 

exocytotic secretion of insulin [139, 140]. In this context, recent evidence appears to 

suggest a significant cross-talk between Arf6/ARNO and Rac1 in the regulation of cell 

function in multiple cell types [141-146].  Therefore, I wondered if Arf6/ARNO signaling 

axis regulates glucose-induced Rac1 activation in the pancreatic β-cell.  We addressed 

this question by quantitating glucose-induced Rac1 activation in INS 832/13 cells in 

which ARNO function is compromised via pharmacological [e.g., secinH3] or molecular 

biological [e.g., siRNA-ARNO] approaches. As expected, we noticed a significant Rac1 

activation in control cells exposed to glucose [Figure 4-2 A]. Interestingly, siRNA-

mediated knockdown of ARNO increased Rac1 activation under basal glucose 

conditions. However, glucose-induced activation of Rac1 was completely inhibited in 

ARNO-depleted β-cells [Figure 4-2 A and B]. Likewise, pharmacological inhibition of 

ARNO/Arf6 signaling axis with secinH3 abolished glucose-induced activation in these 

cells [Figure 4-2 C and D] suggesting that ARNO/Arf6 signaling step might be regulate 

Rac1 activation in the cascade of events leading to GSIS. These data, which are 

compatible with our original proposal [117] also fit into the time-frame for glucose-

induced activation of these proteins. We noticed in this study that Arf6 activation is seen 

as early as 1 min while glucose-induced activation of Rac1 is maximal at 15-20 min 

[139, 140].  
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Figure 4-2: Molecular biological or pharmacological inhibition of ARNO function 
attenuates glucose-induced Rac1 in INS 832/13 cells  

Panel A: INS 832/13 cells were either mock-transfected or transfected with siRNA-
ARNO at a final concentration of 100 nM and after 48 hr culture, cells were stimulated 
with either low glucose [LG, 2.5 mM] or high glucose [HG, 20 mM] for 30 min at 37°C.   
The relative amounts of activated Rac1 [i.e, Rac1.GTP] were quantitated by PAK-PBD 
pull down [see Methods for additional details].  Total Rac1 from cell lysates was used as 
the loading control. A representative blot from three independent experiments is shown 
here. 

Panel B: Data from Panel A were analyzed densitometrically and expressed as fold 
change in Rac1.GTP over basal. Data are mean ± SEM of five independent 
experiments. * and # represent p < 0.05 vs. low glucose without siRNA-ARNO; and **p < 
0.05 vs. high glucose without siRNA-ARNO.  
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Panel C: INS 832/13 cells were cultured overnight in the presence or absence of 
secinH3      [50 µM] and further stimulated with low glucose [LG, 2.5 mM] and high 
glucose [HG, 20 mM] for 30 min in the continuous presence or absence of secinH3. The 
relative amounts of activated Rac1 [i.e, Rac1.GTP] were determined by PAK-PBD pull 
down assay as described in Panel A. Total Rac1 from cell lysates was used as the 
loading control.  

Panel D: Data were analyzed densitometrically and expressed as fold change in 
Rac1.GTP over basal and are mean ± SEM of three independent experiments. * 
represents p <0.05 vs. low glucose without secinH3; ** p < 0.05 vs. high glucose without 
secinH3, and data points with similar symbol do not differ statistically. 
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Along these lines, earlier studies from our laboratory have suggested that the 

carboxylmethylation of Cdc42 is stimulated by glucose within 1 min of exposure [75]. 

More recent and comprehensive investigations by Thurmond’s group [76, 139] have 

reported glucose-induced activation of Cdc42 within 3 min of exposure. They also 

demonstrated that Cdc42 activation is upstream to Rac1 activation in the cascade of 

events leading to GSIS [139]. Therefore, we examined if inhibition of ARNO/Arf6 

signaling step affects Cdc42 activation. Our findings suggested ~50% inhibition of 

glucose-induced activation of Cdc42 in INS 832/13 cells following inhibition of 

ARNO/Arf6 either by siRNA-ARNO or by secinH3 [Figure 4-3 A-D]. Together, our 

findings are suggestive of sequential activation of Arf6, Cdc42 and Rac1 by ARNO in 

glucose-stimulated β-cell culminating in insulin secretion. 

 

 

 

 

Figure 4-3: Molecular biological or pharmacological inhibition of ARNO function 
attenuates glucose-induced Cdc42 activation in INS 832/13 cells  

Panel A: INS 832/13 cells were either mock-transfected or transfected with siRNA-
ARNO (i.e., si-ARNO) at a final concentration of 100 nM and after 48 hr culture, cells 
were stimulated with either low glucose [LG, 2.5 mM] or high glucose [HG, 20 mM] for 
30 min at 37°C.   The relative amounts of activated Cdc42 [i.e, Cdc42.GTP] were 
quantitated by PAK-PBD pull down [see Methods for additional details].  Total Cdc42 
from cell lysates was used as the loading control. A representative blot from three 
independent experiments is shown here. 
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Panel B: Data from Panel A were analyzed densitometrically and expressed as fold 
change in Cdc42.GTP over basal. Data are mean ± SEM of three independent 
experiments. * and ** represent p < 0.05 vs. low glucose without si-ARNO; and ***p < 
0.05 vs. high glucose without si-ARNO.  
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Panel C: INS 832/13 cells were starved overnight in the presence or absence of 
secinH3 [50 µM] and were stimulated with low glucose [LG, 2.5 mM] and high glucose 
[HG, 20 mM] for 3 min in the continuous presence or absence of secinH3. The relative 
amounts of activated Cdc42 [i.e, Cdc42.GTP] was determined by PAK-PBD pull down 
assay. Total Cdc42 from cell lysates was used as the loading control.  

Panel D: Data were densitometrically analyzed and is expressed as fold change in 
Cdc42.GTP over basal and are mean ± SEM of three independent experiments yielding 
similar results. * and ** represents p<0.05 vs. low glucose without secinH3 and # p < 
0.05 vs. high glucose without secinH3.  
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Phospholipase D is modulated by ARNO/Arf6 

Phospholipase D [PLD] has been a key player in the regulation of golgi trafficking 

as well as exo-endocytotic processes. Membrane trafficking involves the input of lipid-

modifying enzymes which either help to form micro-domains or supply second 

messengers. PLD catalyzes the breakdown of phosphatidyl choline to phosphatidic acid 

[PA] and choline. A role for PLD in regulating vesicular traffic is particularly compelling 

due its cellular location and its function as a lipid-modifier. It has been well-established 

to play a regulatory role in release of insulin by secretagogues. Arf6, so far, has been a 

well-known mediator of membrane reorganization.  Earlier work has shown the 

interaction between Arf6 and PLD in MIN6 cells upon glucose stimulation [147]. They 

also demonstrated the ability of Arf6 to regulate the PLD’s activity under stimulatory 

conditions using brefeldin A [BFA] which inhibits the guanine nucleotide exchange on 

the Arf6. Therefore we sought to assess if PLD activity was dependent on activation of 

Arf6 via its GEF, ARNO. As seen in Figure 4-4, INS 832/13 cells show an increased 

activity of PLD when stimulated with glucose, consistent with findings in chromaffin cells 

[148]. But in cells challenged with secinH3, an inhibitor of ARNO, cellular activity of PLD 

was reduced, notably more than 40% when stimulated with glucose. These data confirm 

a close relationship between active Arf6 and PLD activity in pancreatic beta cells. 
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Figure 4-4: SecinH3 inhibits glucose-induced activation of PLD 

INS 832/13 cells were starved in low serum-low glucose overnight ± secinH3 [50 µM] 
and stimulated with either low glucose [LG, 2.5 mM] or high glucose [HG, 20 mM] ± 
secinH3 [50 µM] for 30 min. PLD activity was determined by Amplex red PLD assay kit. 
50 µg protein was made upto 100 µL volume with 1x reaction buffer [kit]. 100 µL of 
working reagent [kit components] was added and incubated for 30 min at 37 ºC. 
Fluorescence was measured at 530/590 nm and hydrogen peroxide was used as a 
positive control. Data shown above are expressed as fold change over basal and mean 
± SEM from three independent experiments.       * represents p < 0.05 vs. low glucose 
without secinH3; high glucose with secinH3 and low glucose with secinH3. Similar 
symbols do not differ significantly.  
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ERK1/2 activation requires active Arf6 

Cationic events following glucose metabolism activates protein kinases. In 

addition to calcium-dependent protein kinases, mitogen-activated protein kinases like 

extracellular signal-regulated kinases [ERK1/2] have been characterized in the beta-cell 

[149]. ERK1/2 are regulated in a manner to meet the secretory demands of the 

pancreatic beta-cell, integrating long- and short-term fuel sensing information. Recently 

published evidence from our laboratory demonstrated activation of ERK1/2 in GSIS. 

Data using siRNA of ERK1/2 clearly indicated that ERK1/2 activation regulates the 

activity of Rho GTPase, Rac1, leading to insulin release [150]. Added to this, my earlier 

work has demonstrated Arf6 to be a potential upstream regulator of Rac1 in GSIS from 

pancreatic beta-cells. Furtherance to earlier findings, I tested the effect of secinH3 on 

activation of ERK1/2. Data described in Figure 4-5 A-B demonstrated that incubation of 

INS 832/13 cells with a stimulatory concentration of glucose leads to a significant 

increase in ERK1/2 phosphorylation whereas secinH3, a known inhibitor of ARNO-

mediated activation of Arf6, totally abrogated the effect of glucose on ERK1/2 activation. 

This clearly indicates the role for ARNO/Arf6 in modulating the activity of ERK1/2 in the 

events leading to insulin secretion.  
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Figure 4-5: Pharmacological inhibition of ARNO function attenuates glucose-
induced ERK1/2 activation in INS 832/13 cells  

Panel A: INS 832/13 cells were starved overnight in the presence or absence of 
secinH3 [50 µM] and were stimulated with low glucose [LG, 2.5 mM] and high glucose 
[HG, 20 mM] for 30 min in the continuous presence or absence of secinH3. Lysates 
were prepared in RIPA lysis buffer substituted with appropriate phosphatase and 
protease inhibitors. Quantitated amounts of proteins were loaded and probed for p-ERK 
1/2 [p-44/42]. The blot was reprobed for total ERK 1/2.   

Panel B: Data were densitometrically analyzed and is expressed as fold change in ratio 
of p-ERK ½ over total ERK ½ and are mean ± SEM of three independent experiments 
yielding similar results. * represents p<0.05 vs. low glucose without secinH3; ** p < 0.05 
vs. high glucose without secinH3 and *** p < 0.05 vs. low glucose without secinH3. 
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Arf6-mediated regulation of ROS 

Reactive oxygen species [ROS] are involved in pathogenesis of diabetes [151], 

cardiovascular [152] and neurodegenerative diseases [153]. But growing evidence has 

suggested ROS to play an essential role in physiological processes such as insulin 

secretion and signaling acting as second messengers [154]. Apart from being produced 

by mitochondria, ROS is also generated by NADPH oxidase which also contributes to 

GSIS in the pancreatic islets [155, 156]. Evidence from Collins’ and Pénicaud’s 

laboratory [157] provided strong evidence in favor of ROS as a metabolic signal in 

insulin secretion. Collin’s group demonstrated the following: i) glucose stimulates 

production of ROS, ii) increased ROS stimulates insulin secretion and iii) use of 

antioxidants that quenched ROS production inhibited secretion of insulin [154]. Recent 

evidence from my lab demonstrated a role for prenylated Rac1 in glucose- and 

mitochondrial fuel-induced Nox-dependent ROS generation in INS 832/13 cells and 

rodent islets [158]. Apparently, the unidentified prenylated protein is required for 

glucose-induced ERK1/2 phosphorylation, ROS generation and Rac1 activation. Along 

this line of evidence, I wondered if Arf6 had any regulatory role over glucose-induced 

ROS generation. With this in mind, using a pharmacological approach, I examined 

whether activated Arf6 was necessary for ROS generation. Data in Figure 4-6 

demonstrated a significant reduction in glucose-induced ROS generation in INS 832/13 

cells [Panel A] and in rat islets [Panel B]. Together, these findings suggested 

involvement of Arf6/ARNO in the signaling cascade leading to ROS generation by 

glucose.  
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Figure 4-6: SecinH3 inhibits glucose-induced generation of ROS 

Panel A and B: INS 832/13 cells [A] or rat islets [B] were starved in low serum-low 
glucose overnight ± secinH3 [50 µM] and stimulated with either low glucose [LG, 2.5 
mM] or high glucose [HG, 20 mM] ± secinH3 [50 µM] for 60 min. At the end of 
stimulation, cells were incubated with DCHFDA (10 µM; 30 min) and harvested for 
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quantitation of DCF fluorescence. Data shown above are expressed as fold change 
over basal and mean ± SEM from three independent experiments.  In Panel A, * 
represents p < 0.05 vs. low glucose without secinH3; high glucose with secinH3 and low 
glucose with secinH3. Similar symbols do not differ significantly. Panel B, * represents p 
< 0.05 vs. low glucose without secinH3; low glucose with secinH3 and high glucose with 
secinH3. Similar symbols do not differ significantly. 

Regulation of NADPH Oxidase by ARNO/Arf6 

At the outset, I demonstrated that generation of ROS is regulated by ARNO/Arf6 upon 

stimulation with glucose. ROS is generated by a family of Noxs in response to stimuli 

that signal through Rho GTPases, Rac [159, 160]. Supportive evidence demonstrated 

the localization and activation of Nox subunits in clonal beta-cells, rat islets and human 

islets [161, 162]. Activated Rac1 is an essential component of Nox holoenzyme 

complex and initiates the assembly of both cytosolic and membranic Nox subunits. 

Activation of the Nox complex has been associated with phosphorylation of p47phox, 

p67phox and p40phox and their subsequent translocation to plasma membrane [159]. 

Since ARNO/Arf6 has been shown to regulate both the activation of Rac1 and 

generation of ROS, I wanted to determine if the regulatory pair modulated the assembly 

of Nox by affecting the activation and translocation of p47phox, a cytosolic subunit of 

Nox. Therefore, I monitored the impact of secinH3 on glucose-induced phosphorylation 

of p47phox and its recruitment to membranes in INS 832/13 cells. Figure 4-7 A and B 

shows that glucose stimulation increased the phosphorylation of p47phox which was 

reduced in secinH3-treated cells to near basal levels. In Figure 4-8 A and B, secinH3 

treated cells showed reduced translocation of p47phox to membrane compared to control 

cells when stimulated with glucose. Collectively, the above evidence demonstrates 

ARNO to regulate the activation and assembly of Nox enzyme complex in pancreatic 

beta cells leading to insulin secretion.  
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Figure 4-7: SecinH3 inhibits glucose-induced phosphorylation of p47phox  

Panel A: INS 832/13 cells were starved in low serum-low glucose overnight ± secinH3 
[50 µM] and stimulated with either low glucose [LG, 2.5 mM] or high glucose [HG, 20 
mM] ± secinH3 [50 µM] for 60 min. Lysates were prepared in RIPA lysis buffer 
substituted with appropriate phosphatase and protease inhibitors. Quantitated amounts 
of proteins were loaded and probed for p-p47phox. The blot was reprobed for total 
p47phox.  A representative blot from three independent experiments is shown here. 

Panel B: Data shown above are expressed as fold change over basal and mean ± SEM 
from three independent experiments.  In Panel A, * represents p < 0.05 vs. low glucose 
without secinH3; high glucose with secinH3 and low glucose with secinH3. Similar 
symbols do not differ significantly. 
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Figure 4-8: SecinH3 inhibits glucose-induced translocation of p47phox to 
membrane 

Panel A: INS 832/13 cells were starved in low serum-low glucose overnight ± secinH3 
[50 µM] and stimulated with either low glucose [LG, 2.5 mM] or high glucose [HG, 20 
mM] ± secinH3 [50 µM] for 60 min. At the end of stimulation, cells were lysed in 
homogenization buffer. Lysates were then differentially centrifuged [methods] to 
separate cytosol and membranic fractions. Total amount of proteins were quantitated in 
membrane fractions and separated onto SDS-PAGE. Proteins transferred onto 
nitrocellulose membrane were probed for p47phox. A representative blot from three 
independent experiments is shown here. 

Panel B: Data shown above are expressed as fold change over basal and mean ± SEM 
from three independent experiments.  In Panel A, * represents p < 0.05 vs. low glucose 
without secinH3; high glucose with secinH3 and low glucose with secinH3. Similar 
symbols do not differ significantly.  
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Actin remodeling 

Arf6/ARNO has demonstrated many roles in regulation of actin cytoskeleton 

[163-166]. Particularly in neuroendocrine cells, cortical actin is shown to act as a barrier 

to movement of preformed dense core granules [167]. Upon stimulation, the actin 

network is dissolved thus allowing the granules to traverse the cell in order to access 

the plasma membrane. In addition to prominent roles of ARNO/Arf6 in actin cytoskeletal 

remodeling, cofilin is considered as a prototype of a family of actin-binding proteins that 

modulate cytoskeleton organization [168]. Cofilin is a well-studied protein that can bind 

and sever actin filaments and is involved in actin remodeling. Inactive cofilin is defined 

by its phosphorylated state. Activation of a phosphatase in response to stimulus, 

dephosphorylates cofilin and thus enabling it to bind actin [169, 170]. In order to study 

modulation of cytoskeleton organization, I investigated the effect of ARNO/Arf6 on the 

activation of cofilin. First, I determined the time-kinetics for the dephosphorylation or 

phosphorylation cycle of cofilin upon glucose stimulation. When INS 832/13 cells were 

stimulated with glucose for 0, 15, 30 and 60 min, cofilin was dephosphorylated 

significantly after 30 min time-point. This is in line with second-phase of insulin secretion 

where the reserve pool of granules needs to access the plasma membrane. To imply a 

role for active Arf6 in actin remodeling we tested the effect of secinH3 on glucose-

induced dephosphorylation of cofilin. When activation of Arf6 is blocked using secinH3, 

cofilin is no longer dephosphorylated [Figure 4-7 A and B]. This above data correlated 

Arf6/ARNO to be an essential upstream regulator actin remodeling via the actin-

severing agent, cofilin. 
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Figure 4-9: Pharmacological inhibition of ARNO function attenuates glucose-
induced cofilin activation in INS 832/13 cells  

Panel A: INS 832/13 cells were starved overnight in the presence or absence of 
secinH3 [50 µM] and were stimulated with low glucose [LG, 2.5 mM] and high glucose 
[HG, 20 mM] for 30 min in the continuous presence or absence of secinH3. Lysates 
were prepared in RIPA lysis buffer substituted with appropriate phosphatase and 
protease inhibitors. Quantitated amounts of proteins were loaded and probed for p-
cofilin [Ser 3]. The blot was reprobed for total cofilin.   

Panel B: Data were densitometrically analyzed and is expressed as fold change in ratio 
of p-cofilin over total cofilin and are mean ± SEM of three independent experiments 
yielding similar results. * represents p<0.05 vs. low glucose without secinH3; ** p < 0.05 
vs. low glucose without secinH3 and *** p < 0.05 vs. high glucose without secinH3. 
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Active Arf6 regulates endocytosis 

Dynamin-1, found in abundance in neuroendocrine cells, specifically regulates 

recycling of secretory vesicles after exocytosis [171, 172]. Among the three domains, 

the PRD domain plays a crucial role in mediating interaction with other proteins. The 

phosphorylation cycle of dynamin regulates protein-protein interactions and protein-lipid 

interactions [173, 174]. In a resting nerve terminal dynamin remains phosphorylated, 

but on stimulation phosphatases like calcineurin is activated, which dephsophorylates 

dynamin [114]. Moreover, it is directly demonstrated that dynamin-1 is 

dephosphorylated at Ser 774 after stimulation in neurons in vivo [175]. Dynamin-1 

dephosphorylation in response to glucose stimulation is not yet investigated. This is an 

essential determinant of stimulus-induced activity. I challenged pancreatic beta-cell 

cultures with stimulatory concentrations of glucose at increasing time-point [0, 15 and 

60 min]. Glucose challenge dephosphorylated dynamin 1 at Ser-774 with increasing 

time. In INS 832/13 cells, we found dynamin-1 to be dephosphorylated [active] to the 

maximum at 60 min upon glucose stimulation coinciding with endocytotic process 

[Figure 4-9]. Arf6 is a potential regulator of membrane traffic. It seems to efficiently 

control both exocytosis and endocytosis of vesicles as evident in many cell types. There 

has been direct implication of active Arf6 recruiting dynamin to membrane for 

endocytosis [137]. With this in regard, we tested whether active Arf6 functioned as an 

upstream regulator in the activation of dynamin-1. Upon treatment with secinH3, 

stimulation with glucose could not dephosphorylate dynamin-1 anymore [Fig 4-10]. This 

is clear evidence for active Arf6 to regulate the endocytic limb of the secretory process. 
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Figure 4-10: Glucose induces activation of dynamin-1 over time in INS 832/13 
cells  

Panel A: INS 832/13 cells were starved overnight and further stimulated with low 
glucose [LG, 2.5 mM] and high glucose [HG, 20 mM] for indicated time-points. Lysates 
were prepared in RIPA lysis buffer substituted with appropriate phosphatase and 
protease inhibitors. Quantitated amounts of proteins were loaded and probed for p-p-
dynamin-1. The blot was reprobed for total dynamin-1.   

Panel B: Data were densitometrically analyzed and is expressed as fold change in ratio 
of p-dynamin-1 over total dynamin-1 and are mean ± SD of two independent 
experiments yielding similar results. * represents p<0.05 vs. p-dynamin-1 at 0 and 15 
min time point. 

Panel C: INS 832/13 cells were starved overnight and further stimulated with low 
glucose [LG, 2.5 mM] and high glucose [HG, 20 mM] for indicated time-points. Cells 
were fixed and permeabilized and stained with p-Dynamin-1 antibody and Hoecsht 
nuclear stain for immunofluorscence [Methods]. The signal intensity of p-dynamin-1 is 
reduced in cells stimulated with glucose for 60 min as compared to 0 min. A 
representative image from multiple cells on two sets of coverslips is shown here.   
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Figure 4-11: SecinH3 attenuates glucose-induced dynamin-1 activation in INS 
832/13 cells  

Panel A: INS 832/13 cells were starved overnight in the presence or absence of 
secinH3 [50 µM] and were stimulated with low glucose [LG, 2.5 mM] and high glucose 
[HG, 20 mM] for 0, 15 and 60 min in the continuous presence or absence of secinH3. 
Lysates were prepared in RIPA lysis buffer substituted with appropriate phosphatase 
and protease inhibitors. Quantitated amounts of proteins were loaded and probed for p-
dynamin-1. The blot was reprobed for total dynamin-1.   

Panel B: Data were densitometrically analyzed and is expressed as fold change in ratio 
of p-dynamin-1 over total dynamin-1 and are mean ± SD of two independent 
experiments yielding similar results. * represents p<0.05 vs. p-dynamin-1 at 0 and 15 
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min time point with or without secinH3 and ** represents p<0.05 vs. p-dynamin-1 at 60 
min stimulation without secinH3. 

Role(s) of Posttranslational Modification of Small G-Proteins in Glucose-

Stimulated Insulin Secretion 

For decades it is well known that small G-proteins undergo certain other 

chemical modifications apart from the addition of GTP to confer functional activity [69, 

176]. A growing body of evidence indicates that G-proteins undergo isoprenylation and 

methylation. These chemical modifications are termed as post-translational 

modifications which enable small G-proteins to attach to plasma membrane. Recent 

years have seen advances in elucidating these modifications that confer biological 

activity upon small G-proteins. Ras family of G-proteins consist a CAAX motif [C,Cys; A, 

Aliphatic amino acid and X, any amino acid] at the C-terminal end [120]. The processing 

of CAAX-containing proteins undergoes prenylation [farnesylation or 

geranylgeranylation] [177] followed by a prenyl-cysteine carboxylmethylation. The 

enzymes that catalyze the above processes are of utmost interest for their therapeutic 

potential as anti-cancer agents and have also been a valuable tool in evaluating the 

importance of such modifications in stimulated insulin secretion. Prenylation process 

involves the addition of prenyl intermediates that are generated from acetyl CoA and 

acetoacetyl CoA in the cholesterol biosynthetic pathway at the CAAX motif. The 

candidate protein is incorporated with either a farnesyl group [15-carbon derivative of 

mevalonic acid] by farnesyltransferases [FTase] or a geranylgeranyl group [20 carbon 

derivative of mevalonic acid] by geranylgeranyltransferases [GGTase] [178].  The major 

farnesylated proteins include Ras, nuclear lamins and also gamma-subunits of trimeric 
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G-proteins whereas the geranylgeranylated proteins include Cdc42, Rac1 and Rho 

[140]. 

Extensive evidence from our laboratory has shown the localization and 

involvement of prenylation signaling event to be an essential step in GSIS from 

pancreatic beta cells [150, 158, 179]. Earlier studies have also demonstrated a potential 

regulatory role for prenylation in physiological insulin secretion with the use of 

pharmacological inhibitors [177]. 

 

 

 

 

 

 

 

 

 

Figure 4-12. Image depicting a biosynthesis of farnesyl and geranyl pyrophosphates. 

[140]. 

From Kowluru A, Endocr Rev. 2010 
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Followed by the addition of a prenyl group to the C-terminal cysteine, the three amino 

acids after the prenylated cysteine are cleaved by Ras-converting enzyme 1 [Rce 1], 

thus exposing the carboxylate anion. A secondary step involves the methylation of 

carboxylate site by isoprenylcysteine-O-carboxyl methyltransferase [ICMT] [180, 181]. It 

is widely accepted that the two steps increase the hydrophobicity of the candidate 

proteins for optimal targeting to their relevant membranous sites for the regulation of 

effector proteins [181]. While a significant number of recent studies have focused on 

putative roles of G-protein prenylation in glucose-stimulated insulin secretion (GSIS), 

very little is known with regard to potential roles of carboxymethylation in islet function 

[181]. Original studies from our laboratory have attempted to address the roles of 

carboxymethylation in islet function, including insulin secretion [75, 77]. Therein, using 

selective inhibitors of ICMT such as acetyl farnesyl cysteine (AFC) we have been able 

to demonstrate that Cdc42 and Gγ subunits undergo carboxymethylation in response to 

glucose in clonal β-cells, normal rat islets and human islets [75, 77]. Follow-up studies 

by Li and coworkers characterized ICMT in insulin-secreting cells for its subcellular 

localization and regulation by known second messengers of insulin secretion [182]. In 

the current study, I have revisited this area of islet biology to precisely determine the 

role of carboxymethylation and the identity of methylated proteins to further evaluate 

their roles in the signaling events leading to insulin secretion.   

Along these lines, emerging evidence implicates novel regulatory roles for 

phagocyte-like NADPH oxidases (Nox) in physiological insulin secretion. For example, 

using selective inhibitors (e.g., DPI or apocynin) and molecular biological tools (e.g., 

antisense and siRNAs for Nox subunits), several recent studies have demonstrated 
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“second messenger” roles for Nox-derived reactive oxygen species  in glucose-

stimulated insulin secretion [183-185]. Some of these aspects, including downstream 

targets for reactive oxygen species signals have been reviewed by Pi and Collins 

recently [153].  Furthermore, recent studies from our laboratory have also demonstrated 

a novel regulatory role for Rac1 in Nox-derived generation of reactive oxygen species, 

thus suggesting that glucose-induced Rac1 activation step might be necessary for Nox-

mediated generation of reactive oxygen species and insulin secretion.  For example, 

using selective inhibitors of prenylation (e.g., GGTI-2147), we have demonstrated that 

post-translational prenylation of Rac1 is important for its regulation of generation of 

reactive oxygen species [158]. Therefore, based on the above evidence and as a 

logical extension to studies to suggest obligatory roles of ICMT-mediated 

carboxymethylation of Rac1 function for its subcellular localization and function [186, 

187], we undertook the current investigation to determine the regulatory roles of ICMT 

in glucose-induced Rac1 activation, generation of reactive oxygen species and insulin 

secretion in INS 832/13 cells.  We have accomplished this goal by two distinct 

approaches to compromise the β-cell endogenous ICMT function, via siRNA-mediated 

knockdown of ICMT expression and pharmacological inhibition of ICMT by AFC. 

Indeed, data accrued from the current studies underscores the importance of 

carboxymethylation of Rac1 in glucose-induced Nox activation and associated 

generation of reactive oxygen species and insulin secretion. 

ICMT is expressed in INS 832/13 cells   

At the outset, I determined the immunological localization and subcellular distribution of 

ICMT in INS 832/13 cells. For this, total particulate and soluble fractions were isolated 
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from INS 832/13 cells by a single step centrifugation method and relative abundance of 

ICMT was determined in these fractions by Western blotting.  Data in Figure 4-13 

suggested a predominant membrane association of ICMT in these cells. It should be 

also noted that we consistently observed a doublet for ICMT on Western blots, which 

might represent a post-translationally modified form of this protein.   

 

 

Figure 4-13: Expression and subcellular distribution of ICMT in INS 832/13 cells  

Total particulate and soluble fractions were isolated from INS 832/13 cells by a single 
step centrifugation method described under Methods. ICMT expression was determined 
in these fractions by Western blotting. A representative of three blots is shown here.  

 

 

 

 

 

 

Figure 4-14: Localization of ICMT in INS 832/13 cells by immunofluorescence 
under basal and glucose-stimulated conditions 

INS 832/13 cells were plated on coverslips and cultured overnight in low serum low 
glucose media prior to the incubation with either 2.5 mM (Panel A) or 20 mM glucose  
(Panel B) for 45 min at 37°C.  The cells were fixed in 4% par aformaldehyde solution in 
PBS for 15 min and permeabilized using 0.2% triton X-100 for 15 min. Fixed cells were 
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examined for ICMT (stained in green) and nuclei (stained in blue) as described under 
Methods. 

In the next series of studies we determined the distribution of ICMT in INS 832/13 cells 

by immunofluorescence method. Data in Figure 4-14 suggested that ICMT [green] 

remain diffused throughout the cell under basal (Panel A; LG; 2.5 mM glucose) 

conditions. Further, we observed no clear effects of stimulatory glucose (Panel B; HG; 

20 mM glucose) on ICMT distribution in these cells.  

siRNA-mediated knockdown of ICMT attenuates glucose-, but not KCl-induced 

insulin secretion in INS 832/13 cells 

We next investigated potential regulatory roles of ICMT in glucose-induced insulin 

secretion in these cells. To address this, we knocked down the endogenous expression 

of ICMT by siRNA methodology.  Data in Figure 4-15 A and B indicated more than ~70 

% inhibition in the expression of ICMT following siRNA-ICMT transfection.  Data in 

Figure 4-15 C suggested no significant effects of scrambled siRNA transfection either 

on basal or glucose-induced insulin secretion (bars 1 vs. 3 and 2 vs 4).  However, 

transfection of siRNA-ICMT in these cells led to a modest increase in basal secretion 

(bars 1 or 2 vs. bar 5), but insulin secretion elicited by stimulatory glucose was 

significantly reduced in ICMT knocked down cells (bars 2 or 4 vs. 6).  These data 

suggested that activation of ICMT is necessary for glucose-stimulated insulin secretion 

to occur.  We then determined potential requirement for ICMT in insulin secretion 

elicited by a membrane depolarizing concentration of KCl.  Data shown in Figure 4-15 

D suggested no significant effects of ICMT knockdown on KCl-induced insulin secretion. 
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Together, data in Figure 4-15 C and D suggest that glucose, but not KCl-evoked insulin 

secretion is mediated via activation of ICMT. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-15: Glucose-, but not KCl-stimulated insulin secretion, is attenuated in 
INS 832/13 cells following siRNA-mediated knockdown of ICMT 

INS 832/13 cells were either mock transfected or transfected with scrambled siRNA or 
siRNA-ICMT at a final concentration of 100 nM and cultured for 24 h. Transfection 
efficiency was determined by separating equal amounts of proteins on SDS-PAGE and 
probing with ICMT antibody (Panel A; representative of three transfections is shown 
here). Data in Panel A was densitometrically analyzed and expressed as fold change 
over basal (Panel B). * represent p< 0.05 compared with mock or scrambled siRNA 
transfected cells. 
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Further, transfected cells were incubated either with low glucose (LG; 2.5 mM) or high 
glucose (HG; 20 mM: Panel C) or a membrane depolarizing concentration of KCl (60 
mM; osmolaity adjusted by lowering NaCl; Panel D) for 45 min at 37°C. Insulin released 
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into the medium was quantitated by ELISA. Data  are expressed as percentage of basal 
and are mean ± SEM from three independent determinations. * p< 0.05 vs. respective 
low glucose controls; ** p< 0.05 vs. mock transfected cells.  

 

siRNA-mediated knockdown of ICMT attenuates glucose-induced Rac1 activation 

in INS 832/13 cells 

Published evidence from several laboratories, including our own have suggested that 

activation of Rac1, a small G-protein, is a requisite step in the signaling events leading 

to glucose-insulin secretion [139, 140, 188]. Furthermore, using inhibitors of post-

translational geranylgeranylation [e.g., GGTI-2147] or a dominant negative mutant of 

the α-subunit of geranylgeranyl transferase, we have demonstrated a requirement for 

post-translational geranylgeranylation in glucose-induced Rac1 activation and insulin 

secretion [179]. Since Rac1 undergoes carboxymethylation, we investigated if silencing 

of ICMT affects glucose-induced Rac1 activation. Data shown in Figure 4-16 

demonstrated a significant increase in glucose-induced Rac1 activation (lane 1 vs. 3). 

siRNA-mediated knockdown of ICMT failed to exert any clear effects on basal Rac1 

activation (lane 1 vs. 2), but significantly attenuated glucose-induced Rac1 activation 

(lane 3 vs. 4). Pooled data from multiple experiments are provided in Figure 4-16 B. 

Together, these findings suggested a requirement for carboxymethylation for glucose-

induced activation of Rac1. 
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Figure 4-16: Depletion of endogenous ICMT markedly attenuates glucose-induced 
activation of Rac1 in INS 832/13 cells.  

INS 832/13 cells were transfected with ICMT-siRNA or mock transfected and cultured 
for 24 h. At confluence, cells were starved overnight and stimulated with either low (2.5 
mM) or high (20 mM) glucose for 30 min. The extent of Rac1 activation in these cells 
was quantitated by PAK-PBD pulldown assay. Total and activated (Rac1.GTP) were 
determined by Western blotting (Panel A) and quantitated by densitometry (Panel B).  

 

     LG                            HG       

    -               +               -              +          ICMT-siRNA                  

Rac1.GTP 

  

Total Rac1  

0.0

0.5

1.0

1.5

2.0

F
o

ld
 c

h
an

g
e 

in
 R

ac
1.

G
T

P

LG HG

*

**

- si-ICMT+ +-

[A] 

[B] 



www.manaraa.com

96 

 

 

Data are expressed as fold change in Rac1 activation and are mean ± SEM from three 
independent determinations. * p< 0.05 vs. mock transfected low glucose; **p<0.05 vs. 
mock transfected high glucose. 

 

siRNA-mediated knockdown of ICMT markedly inhibits glucose-induced reactive 

oxygen species generation in INS 832/13 cells 

 Emerging evidence from multiple laboratories appears to suggest novel second 

messenger roles for reactive oxygen species in GSIS [153]. It has also been shown that 

ROS generated via the activation of phagocyte-like NADPH oxidase (Nox) plays such 

regulatory roles in GSIS since pharmacological (e.g., apocynin or DPI) or molecular 

biological (e.g., siRNA or antisense for p47phox) inhibition of Nox led to inhibition of GSIS 

[184, 185]. Since Rac1 represents one of the members of Nox holoenzyme [140, 159], 

we investigated if siRNA-mediated knockdown of ICMT exerts any regulatory effects on 

glucose-induced generation of reactive oxygen species in INS 832/13 cells. Data in 

Figure 4-17 suggested no significant effects of ICMT knockdown on basal levels of 

reactive oxygen species in these cells (bar 1 vs. 2). However, glucose-induced 

generation of ROS was markedly attenuated in cells in which expression of ICMT was 

knocked down (bar 3 vs. 4).  Taken together, these data demonstrated that glucose-

induced Rac1 activation (Figure 4-16), generation of ROS (Figure 4-17) and insulin 

secretion (Figure 4-15) are regulated by ICMT in INS 832/13 β-cells. 
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Figure 4-17: Glucose-induced ROS generation was attenuated in INS 832/13 cells 
following siRNA-mediated knockdown of ICMT  

INS 832/13 cells transfected with ICMT-siRNA (or mock transfected) following which 
cells were stimulated with low glucose (2.5 mM) or high glucose (20 mM) for 1 h and 
were incubated with DCHFDA (10 µM; 30 min) and harvested for quantitation of DCF 
fluorescence. Data expressed as DCF fluorescence and are mean ± SEM from three 
independent determinations.* p< 0.05 vs. respective low glucose; ** p< 0.05 vs. high 
glucose in mock transfected cells. 

 

0.0

0.5

1.0

1.5

2.0

F
o

ld
 c

h
an

g
e 

in
 D

C
F

 f
lu

o
re

sc
en

ce

LG HG

*

**

- si-ICMT+ +-



www.manaraa.com

98 

 

 

Acetyl farnesyl cysteine (AFC), a selective inhibitor of ICMT, attenuates glucose-

induced generation of reactive oxygen species and insulin secretion in INS 832/13 

cells 

 We next confirmed the above data accrued through the use of siRNA-ICMT by a 

pharmacological approach. In the following studies, we determined the effects of acetyl 

farnesyl cysteine (AFC), a selective inhibitor of ICMT [74, 77], on glucose-induced 

generation of reactive oxygen species and insulin secretion.  Data shown in Figure 4-18 

A indicated a modest, but significant inhibition in basal level of reactive oxygen species 

in these cells following exposure to AFC (Figure 4-18; bar 1 vs. 2).  However, increase 

in the level of reactive oxygen species seen in the presence of stimulatory glucose was 

significantly inhibited by AFC (Figure 4-18; bar 3 vs. 4). Furthermore, insulin secretion 

elicited by stimulatory (Figure 4-18; Panel B; bar 3 vs. 4), but not basal glucose (Figure 

4-18; Panel B; bar 1 vs. 2), was markedly attenuated by AFC.  In addition, in a manner 

akin to siRNA-ICMT effects, we observed no significant effects of AFC on KCl-induced 

insulin secretion (Figure 4-18; Panel C). Together, our above described findings confirm 

that glucose-, but not KCl-mediated effects on insulin secretion require activation of 

ICMT. Furthermore, along these lines, we also noticed a significant inhibition of glucose-

induced activation of Rac1 by AFC under the conditions it inhibited glucose-induced 

generation of reactive oxygen species (~ 41 ± 10% inhibition by AFC; mean ± SEM from 

three pull down assays; p <0.05 vs. diluent) and insulin secretion (additional data not 

shown). Together, these data further confirm our siRNA-ICMT findings and support our 

hypothesis that ICMT-mediated carboxymethylation of specific proteins (e.g., Rac1) 
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plays a positive modulatory role in the cascade of events leading to glucose-induced 

generation of reactive oxygen species and insulin secretion in INS 832/13 cells.  

 

 

 

 

 

 

 

 

Figure 4-18: AFC, a competitive inhibitor of ICMT, attenuates glucose-induced 
ROS generation and insulin secretion in INS 832/13 cells 

INS 832/13 cells were cultured overnight with low-glucose and low-serum medium and 
then incubated in KRB in the presence of diluent or AFC (100 µM; 1 h) as indicated in 
the figure. Cells were further stimulated with either low glucose (LG; 2.5 mM) or high 
glucose (HG; 20 mM) for 1 h in continuous presence or absence of diluent or inhibitor. 
At the end of stimulation, ROS generation was determined by quantitating DCF 
fluorescence (Panel A) as described in Figure 4-16.   
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In a separate set of studies glucose- and KCl-stimulated insulin secretion was 
quantitated (Panel B and C) under conditions described in Methods section. Data in 
Panel B are mean ± SEM from three independent determinations.* p< 0.05 vs. low 
glucose without AFC; ** p< 0.05 vs. high glucose without AFC whereas data in Panel C 
are mean ± SEM from 12 determinations in each case. * p< 0.05 vs. low glucose without 
AFC and low glucose with AFC. 
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Inhibition of ICMT does not affect cell viability 

We next investigated potential cytotoxic effects of ICMT knockdown (via siRNA-ICMT) 

or inhibition of ICMT activity (by AFC) on INS 832/13 cells. We asked this question to be 

sure that either inhibition in Rac1 activation, reactive oxygen species generation or 

insulin secretion seen under these conditions are not due to potential loss in cell viability 

or cell demise following inhibition of ICMT expression and/or activity. We addressed this 

by two independent experimental approaches. In the first, we quantitated activation of 

caspase-3, a hallmark of cellular apoptosis, in both siRNA-ICMT transfected cells and 

AFC-treated cells. In the second approach, we quantitated the metabolic  viability of 

siRNA-ICMT transfected or AFC-treated cells using the MTT assay. Data shown in 

Figure 4-19 A and B indicated no caspase 3 activation following siRNA-ICMT 

transfection or AFC treatment. However, a significant activation of caspase 3 was seen 

in INS 832/13 cells treated with etoposide, which causes apoptosis in cells via caspase 

3 activation. Together, these data in Figure 4-19 A and B suggest no cell death in INS 

832/13 cells following inhibition of expression and activity of ICMT. In addition, we 

observed only a modest inhibition in cell viability as assessed by the MTT in cells 

following ICMT knockdown via siRNA-ICMT (Figure 4-19 C) or AFC treatment [Figure 

4-19 D].  Together, these findings suggest that the observed inhibition of glucose-

induced Rac1 activation, generation of reactive oxygen species and insulin secretion 

following inactivation of ICMT are specific and do not involve cytotoxic mechanisms. 
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Figure 4-19: ICMT inhibition does not affect cell viability.  

Panel A INS 832/13 cells treated with AFC [100 µM, 1h] were incubated with MTT [5 
mg/mL, 4h] as described in Materials and Methods.  Cell viability was determined by 
quantitating reduction of MTT by metabolically active cells at 570 nm. Data are means ± 
SEM from two independent experiments yielding identical results with n: >12 in each 
group and expressed as percent change over control. * represents p< 0.05 compared 
with control. In Panel B, INS 832/13 cells were mock transfected or transfected either 
with ICMT siRNA or scrambled siRNA (100 nmol, 24h). Cell viability in transfected cells 
was determined by MTT reduction method as described above. Data are means ± SEM 
from two independent experiments yielding identical results with n: >12 in each group 
and expressed as percent change over control. * represents p< 0.05 compared with 
mock or scrambled siRNA transfected cells. 
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Alterations in ICMT expression in in vitro models of gluco-, lipo-, glucolipotoxicity 

and endoplasmic reticulum stress 

A growing body of evidence implicates that long-term exposure of β-cells to 

saturated fatty acids [i.e., lipotoxicity], glucose [i.e., glucotoxicity] or both [i.e., 

glucolipotoxicity] leads to severe metabolic dysfunction and eventual demise of the β-

cell [189]  Furthermore, exposure of these cells to thapsigargin, leads to endoplasmic 

reticular stress via depletion of calcium pools culminating in cellular dysfunction [190, 

191]. Therefore, in the last series of these studies we investigated potential alterations 

in the expression of ICMT in INS 832/13 cells following exposure to palmitate, glucose 

or thapsigargin. Data shown in Figure 4-20 indicated a significant increase in the 

expression of ICMT in cells exposed to gluco-, lipo- or glucolipotoxic conditions. 

However, no detectable changes were seen in the expression of ICMT protein in 

thapsigargin-treated cells. 

 

 

 

Figure 4-20: Expression of ICMT in lysates of INS 832/13 cells under the duress of 
gluco-, lipo-, glucolipotoxicity and endoplasmic stress 

INS 832/13 cells were plated in six-well plates, grown to 70 % confluence and treated 
with low glucose (LG, 2.5 mM, 48 h), high glucose (HG, 50 mM, 48 h), palmitic acid (PA, 
300 µM; 48 h), HG plus PA (48 h) and thapsigargin (TH, 0.5 µM, 9 h). ICMT expression 
was determined by Western blotting. A representative of two blots is shown here. Actin 
was used as a loading control. 
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Chapter 5 

Functional status of the ARNO/Arf6 signaling cascade and its down-stream 

metabolic steps in models of impaired insulin secretion and type 2 diabetes. 

Type 2 diabetes [T2D] is characterized by a progressive loss of beta-cell function 

throughout the course of the disease. Investigators have established the course of the 

disease starting with an initial loss in early or first phase insulin secretion, which is 

followed by a decreasing maximal capacity of glucose to potentiate all non-glucose 

signals. Apart from these, disproportionate hyperinsulinemia and impaired basal or 

steady-state insulin-secretion [192] add to the symptoms. The disease in clinical 

settings is defined at the end stage of this process and demonstrates all the above 

symptoms. But the remarkable finding is that impaired glucose potentiation and second-

phase defect are compensated by hyperglycemia, at the intermediate stages of final 

beta-cell failure such that even non-glucose secretagogues stimulate release of insulin 

[193-195]. T2D has been shown to develop mainly in subjects that are unable to sustain 

the beta cell compensatory response. Longitudinal studies in T2D, which involved a 

continued observation of variables in a set of subjects over time, indicated a rise in 

levels of insulin in normoglycemic and prediabetic phases that maintain normal blood 

glucose levels inspite of insulin resistance. It was later followed by a decline in insulin 

levels when fasting glycemia surpassed the upper limit of basal [5.5 mM] due to beta-

cell failure.   

 Hyperglycemia is one of the major determinants in the development of diabetic 

complications. Many biochemical and molecular events of high concentration of blood 

glucose underlie the pathogenesis of complications but the exact mechanism is still 
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unclear. With significant advances in tight glucose control, by blood-glucose monitoring 

and therapeutics, debilitating complications still remain the same.  It is found that as 

early as the ‘80s, the concept of a “metabolic memory” has been prevalent, that is 

diabetic complications like vascular stress and retinopathy persist even after glucose 

normalization. This memory phenomenon has been supported by experimental 

evidence seen in both diabetic animals and isolated cells exposed to high glucose, 

followed by normalization to physiological concentrations of glucose and in early 2000, 

in results from clinical trials [196]. Furthermore, researchers have implicated 

nonenzymatic glycation of cellular proteins along with excessive ROS/RNS maintain the 

stress signaling even after tight glucose control thus contributing to metabolic memory. 

Various evidences implicate a role for epigenetic modulation as a factor 

contributing to maintenance of stress levels even after normalization of blood glucose 

levels [197-199].  The idea that early glycemic environment is remembered in target 

organs of diabetic complications [i.e. eye, heart, kidney and extremities] [200-202], I 

wanted to study whether islet beta cells maintained the same metabolic memory. It is 

clearly evident that both Arf6 and Rac1 are essential modulatory factors mediating GSIS 

from pancreatic beta cells. Evidences also indicate a disruption in insulin secretion in 

T2DM. Thus, I was curious to investigate the above phenomenon with respect to 

signaling events associated with insulin secretion, we incubated INS 832/13 cells with 

either 5 or 30 mM glucose for 24 hr followed by normalization and stimulating with 20 

mM glucose for time periods appropriate to activation of Arf6 and Rac1.  When 

compared to control incubated in 11.1 mM, the activation of Arf6 and Rac1 was reduced 

in cells exposed to glucotoxic conditions [Figure 5-1 & 5-2]. Under physiological 
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glucose concentrations [20 mM], both Arf6 and Rac1 demonstrated an increase in fold 

activation which was lost under glucotoxic conditions. But there was no apparent 

change in total protein expression of Arf6 or Rac1. The probable dysfunction of the 

proteins might be due to a possibility of some chemical modification of the proteins like 

glycation which has not been reported yet. This is a clear indication that the beta cell is 

also conditioned to memory process which seems to be irreversible. 
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Figure 5-1: Effect of glucotoxicity on Arf6 activation to stimulatory concentrations 
of glucose  

Panel A: INS 832/13 cells were exposed to either 11.1 (control) or 5 or 30 mM glucose 
for 24 hr. Thereafter, both control and glucotoxic cells were starved overnight in low 
serum-low glucose. Cells were then stimulated with either 2.5 or 20 mM glucose in KRB 
for 3 min. Lysates were collected and used for the detection of Arf6.GTP. Total Arf6 was 
used a loading control. Expression of ARNO under these conditions was also analyzed.  

Panel B: Amount of activated Arf6 was quantitated densitometrically and expressed as 
percent change over control. The values obtained are mean ± SEM  three independent 
experiments. * and *** indicates p < 0.05 vs. control 2.5 mM glucose, ** vs. control 20 
mM glucose. 
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Figure 5-2: Effect of glucotoxicity on Rac1 activation to stimulatory 
concentrations of glucose  

Panel A: INS 832/13 cells were exposed to either 11.1 (control) or 5 or 30 mM glucose 
for 24 hr. Thereafter, both control and glucotoxic cells were starved overnight in low 
serum-low glucose. Cells were then stimulated with either 2.5 or 20 mM glucose in KRB 
for 20 min. Lysates were collected and used for the detection of Rac1.GTP. Total Rac1 
was used a loading control.  

Panel B: Amount of activated Rac1 was quantitated densitometrically and expressed as 
percent change over control. The values obtained are mean ± SEM four independent 
experiments and three out of four experiments followed a similar trend as shown. * and 
*** indicates p < 0.05 vs. control 2.5 mM glucose, ** vs. control 20 mM glucose. 

Table 5-1: Characteristics and islet histopathology of various rodent models of 

TTDM [203]. 

 Plasma glucose    

Model (14+ weeks) 

12+ hours 
fasting, 0 min 
into OGTT (mM) 

60 min 
into 
OGTT 
(mM) 

Typical fasting 
plasma insulin 
(pM) 

Typical fasting 
plasma 
triglyceride (mM) Islet pathology 

Normoglycemic 
Wistar rats 41 51 841 0.382 

Well delineated islets 
with central β cells 
surrounded by α- and δ-
cell mantle 

ZF rats 53 133 18503 55.94 

Hypertrophied islets 
with β-cell proliferation. 
Reduced insulin 
granulation. Some 
degenerate islets. 

ZDF rats 115 225 2414 17.34 

Most islets are poorly 
delineated, showing 
extensive fibrosis and a 
severe reduction in β 
cells. Remaining β cells 
show reduced insulin 
granulation. 

Goto-Kakizaki rats 71 161 1241 592 

“Starfish shaped” islets 
where previously 
hypertrophied islets 
have atrophied and 
fibrotic projections 
remain. 

P. obesus 25.16 (nonfasted)  53006(nonfasted) 26.96 (nonfasted) 

β-Cell vacuolation and 
reduced insulin 
granulation. 

HIP rats 177 — 1007 — 

Progressive amyloidosis 
with a high frequency of 
β-cell apoptosis 



www.manaraa.com

109 

 

 

 Plasma glucose    

Model (14+ weeks) 

12+ hours 
fasting, 0 min 
into OGTT (mM) 

60 min 
into 
OGTT 
(mM) 

Typical fasting 
plasma insulin 
(pM) 

Typical fasting 
plasma 
triglyceride (mM) Islet pathology 

STZ with high-fat 
diet diabetes in Rats 6.98 228 1868 7.58 

Irregular islets, β-cell 
vacuolation and 
apoptosis. Reduced 
insulin granulation. 

Partially 
Pancreatectomized 
Rats 5.59 229 849 — 

Islet hypertrophy with 
some fibrosis and 
occasional inflammatory 
infiltration of islets. 

• Note: TTDM, type 2 diabetes mellitus; OGTT, oral glucose tolerance test; ZF, 
Zucker fatty; ZDF, Zucker diabetic fatty. 

 

Table 1 elucidates the various rodent models available in market that were 

generated by spontaneously mutated genes and induced to develop T2DM.  The ZDF 

rat is a rodent model of NIDDM which shows a predictable progression of the disease 

from prediabetic to diabetic state. The ZDF rat carries a mutation in the gene coding 

leptin receptor (fa/fa) in addition to a mutation that leads to spontaneous hyperglycemia 

at 7 to 10 weeks of age in males [204]. Female rats tend to become hyperglycemic only 

when fed a diabetogenic diet, with this additional mutation still unidentified [205]. Rats 

expressing fa/- genotype are lean and do not develop hyperglycemia. Leptin is a 

hormone that controls feeding behavior and a mutation in the leptin receptor results in 

obesity. 

I used the male ZDF model to assess some of the key signaling events in the 

regulation of insulin secretion and thus may provide an understanding in the 

pathogenesis of diabetes characterized by defective insulin secretion. Changes in 

protein expression were also evident in islets from diabetic ZDF rats compared with 

age-matched lean control animals. Following the onset of diabetes, insulin secretion is 

severely reduced. The islets appear hypertrophic and show degenerative changes. By 
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14 weeks, the islet faces severe degenerative changes leading to defective insulin 

secretion, as the islet has to meet an increased secretory demand added to insulin 

resistance, in response to sustained, raised glucose levels. And there is also a loss in 

reserve pool due to inadequate repletion [206, 207]. 

Expression profile of membrane trafficking proteins under diabetic conditions 

In another study, we quantitated protein expression of Arf6, ARNO, PLD1 and 

actin in islets of both ZDF and diabetic human [Figure 5-3].  The expression levels of 

the indicated proteins were significantly increased compared to the normal phenotype. 

A study from Rutter’s laboratory published evidence for a functional and gene profiling 

analysis of proteins that might be responsible for defective GSIS from ZDF rat islets 

[208]. Microarray analyses of several “glucose-sensing” and exocytotic genes were 

significantly altered in ZDF islets. They also saw marked changes in expression of 

proteins involved in regulation of vesicle traffic and exocytosis. Another set of key 

players, notably the actin remodelers like gelsolin, actin and scinderin were upregulated 

in ZDF islets [208].   
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Figure 5-3: Increased expression of membrane trafficking proteins in ZDF rat and 
T2D islets compared to respective control  

Islets from ZLC or ZDF rats were lysed using RIPA buffer. Equal amount of lysate 
proteins were resolved by SDS-PAGE.  Expression of phosphorylated and total cofilin 
was determined by Western blotting. A representative blot is provided in Figure 5-3 A 
and B for ZDF and TDM islets.  

In line with these studies and our own findings on cofilin, a marker used for actin 

remodeling, we investigated the activation of cofilin in ZDF and diabetic human islets. 

Apart from a significant increase in expression levels of both actin and cofilin under 

diabetic conditions, the phosphorylation of cofilin was upregulated [Figure 5-4]. This 

indicated that actin remodeling might be impaired under beta-cell dysfunction 

contributing to impaired insulin secretion.  
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Figure 5-4: Increased expression and phosphorylation of cofilin in ZDF rat and 
T2D islets compared to respective control  

Islets from ZLC or ZDF rats were lysed using RIPA buffer. Equal amount of lysate 
proteins were resolved by SDS-PAGE.  Expression of phosphorylated and total cofilin 
was determined by Western blotting. A representative blot is provided in Figure 5-4 A 
and B for ZDF and TDM islets.  

 Thus, emerging evidence that hyperglycemia leaves an imprint to the 

development of future complications has potential therapeutic applications. All these 

evidences suggest that ‘glucotoxic memory’ persists even after good glycemic control is 

achieved. This evidently calls for early therapeutic treatment of hyperglycemia from 

diabetes, a strategy that may benefit T1DM with concerns of early insulin use in T2DM 

subjects.  
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Chapter 6 

DISCUSSION 

Metabolic coupling factors generated by glucose and hormones play a regulatory 

role in insulin exocytosis. A rise in intracellular calcium followed by an increase in 

ATP/ADP ratio is an important trigger for exocytosis. Ca2+ mediated action is mediated 

via calcium sensors like synaptotagmins and exocytosis takes place at proximity to 

voltage-dependent Ca2+ channels. SNARE complex formation aided by its chaperones 

NSF and CSP is essential for exocytosis. Insulin exocytosis is also sensitive to GTP and 

major exploratory work has been done to understand the organization of its reputed 

targets, small monomeric and heterotrimeric G-proteins. In this study, I have described 

a role for Arf6/ARNO in stimulated secretion of insulin from pancreatic beta cells. As 

stated in the Introduction, small G-protein Arf6 and its exchange factor ARNO play a key 

regulatory in stimulated-insulin secretion. This cascade involves Rho family proteins, 

lipid-modifying enzymes and actin-severing protein. 

One of the main objectives of my doctoral work was to elucidate a role for 

Arf6/ARNO in GSIS and identify putative effectors for the pair in the cascade leading to 

insulin secretion. These studies were based on the overall hypothesis that ARNO-

mediated activation of Arf6 is necessary to activate downstream effectors in the 

signaling cascade that primes insulin granules and remodels actin cytoskeleton. To 

address this, I have used clonal pancreatic beta cells [INS 832/13 cells] and rat islets. I 

have quantitated several indices both biochemical and molecular biological aspects to 
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validate the above hypothesis. The use of pharmacological tools aided in validating the 

hypothesis. 

In over the years, Arf family of G-proteins has been traditionally portrayed to play 

key regulatory roles in membrane trafficking [95]. From among a family of six, only Arf1 

and Arf6 are well-explored and have been implicated to regulate several cellular events 

including cell motility, vesicular transport, and cortical actin rearrangements [97, 127, 

143]. Arf1, is best characterized as a recruiter from cytosol to Golgi complex. At the 

Golgi it mediates binding of coat proteins and adaptins to Golgi membranes. But recent 

work has shown Arf6 to play distinct functions in eukaryotes. In contrast to Arf1 which is 

restricted to Golgi, Arf6 is majorly associated with secretory granules and plasma 

membrane. Apart from playing a role in granule translocation, Arf6 also serves to 

modulate actin cytoskeleton. In view of early investigations to test functions of Arf family 

in regulated-exocytosis, Arf6 is the most-famed participant. Our localization studies 

remain on par with findings described in chromaffin cell, a model neuroendocrine cell for 

regulated-secretion [120]. 

On examining localization data of Arf6, it was predominantly associated with 

membrane fraction and on further separation into various cellular compartments, Arf6 

was majorly associated with secretory granules. In chromaffin cells, secretory granule-

bound Arf6 was found to associate with plasma membrane on stimulation. And this 

substantiates the involvement of the protein in intracellular vesicle trafficking.  

Key to our understanding of Arf6 function in insulin exocytosis will be regulatory 

factors that activate the protein. One important regulatory factor for Arf6 is the GEF, 
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ARNO. In our study we report the presence of ARNO, predominantly localized in the 

cytosol. To show that they are hydrophilic proteins we performed phase partitioning 

experiment with Triton-X 114 as integral membrane proteins separate out in the 

hydrophobic detergent phase. In the present study we demonstrated that ARNO might 

subserve the function of a GEF for Arf6 in the islet β-cell. There are enough reports for 

the involvement of this small G-protein in regulated secretion in chromaffin cells as well 

as in MIN6, another clonal pancreatic beta cell.  

To confirm their involvement in GSIS, dominant negative mutants [inactive 

conformations] of these proteins were overexpressed and its effect on GSIS was 

quantitated. To add more weightage to the above data, endogenous expression of both 

Arf6/ARNO was silenced and GSIS was quantitated. Data accrued from insulin 

secretion studies, indicated a positive modulatory for Arf6/ARNO in GSIS. We further 

wanted to test if Arf6/ARNO modulated K+-stimulated insulin secretion. We transfected 

cells with siRNA-ARNO and found that K+-stimulated insulin secretion was reduced by 

~60%. Though glucose is a major insulin secretagogue, there are other nutrients like 

amino acids which potentiate GSIS. A detailed study on the dose- and glucose-

dependent effects of amino acids on insulin secretion made us to question if Arf6/ARNO 

played a role in amino-acid potentiated GSIS. We tested this hypothesis using siRNAs 

of both Arf6 and ARNO and found that they attenuated L-arginine potentiated GSIS. All 

the above evidence corroborated the involvement of Arf6/ARNO in regulated-insulin 

secretion. 

The next step in the project was only apt to determine the time-course 

dependence of glucose-stimulated activation of Arf6. With recent advances in molecular 



www.manaraa.com

116 

 

 

biology, we were able to study the time kinetics of Arf6 activation in pancreatic beta 

cells. We employed GST-GGA3 beads in a pull-down assay, which essentially 

recognizes only active form of Arf6 [Arf6-GTP]. Glucose stimulation at multiple time-

points starting from 0-30 min indicated a constitutive activation of Arf6. Surprisingly, K+ 

stimulation also activated the protein unlike other G-proteins. 

We also demonstrated that ARNO is one of the regulatory factors for glucose-

mediated activation of Arf6 using pharmacological and gene-silencing tools.  

 

 

 

 

 

Figure 6-1. Structural representation of secinH3 with binding element that binds to 
cytohesin sec-7 domain [134]. 

Until very recently, only one small-molecule inhibitor, brefeldin A, an inhibitor of Arf 

GDP/GTP exchange, was available. But it was found brefeldin A was not sensitive 

towards cytohesins. The availability of secinH3, a novel small-molecule inhibitor of 

cytohesins, made it easy to dissect the role of ARNO. Above is the chemical structure of 

secinH3 designed by Famulok group [134]. SecinH3 gets its name for its high affinity to 

the functional domain of cytohesins, sec7. When used in mice, flies and human liver 

cells, it impaired Arf6/ARNO signaling pathway. In their paper describing synthesis and 

application for secinH3, they tested the selectivity of the inhibitor and found it to be 
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highly selective for cytohesin family with minimal or no effects against other Arf family of 

GEFs or other GTPases [134]. Hafner utilized the compound to study the role of 

Arf6/ARNO in insulin signaling pathway. It further substantiated the potential of secinH3 

to inhbit ARNO-mediated activation of Arf6 [107].  

We found that GTP-bound Arf6 upon glucose stimulation was significantly 

reduced when functional role of ARNO was compromised.   

Salient features of our study are:  

I. Arf6/ARNO is expressed in clonal β-cells, rodent islets and human islets 

II. Overexpression of inactive mutants of ARNO or Arf6 or siRNAs of Arf6 or ARNO   

reduces insulin secretion elicited by glucose, arginine and KCl in insulin-secreting 

cells 

III. SecinH3, a selective inhibitor of ARNO/Arf6 signaling pathway, also inhibits GSIS 

in INS 832/13 cells and rodent islets  

IV. Insulinotropic concentration of glucose/KCl stimulates Arf6 activation  

V. Glucose-induced Arf6 activation is inhibited by secinH3 or siRNA-ARNO, 

suggesting a critical involvement of ARNO/Arf6 in insulin secretion and 

VI. Glucose promotes association between ARNO and Arf6 as evidenced by co-

immunoprecipitation and confocal microscopic studies.  

These findings provide the first evidence to implicate novel roles for Arf6/ARNO in 

insulin secretion. 

2. What are the potential effectors of Arf6/ARNO signaling pathway? 
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Over decades, research has progressed to understand signal transduction 

involved with insulin secretion. And over the course, new proteins have been discovered 

and many pathways have been built. So far, we had worked on establishing a role for 

Arf6/ARNO in regulating stimulated-insulin secretion. Now we were interested in 

identifying downstream effectors in this signaling cascade. We studied the effects of 

compromised Arf6/ARNO on the activity of putative targets. Our first target was 

nm23H1, a tumor suppressor, whose function is to provide a localized supply of GTP. 

But its role as a regulator of heterotrimeric GTP-binding proteins gained much 

importance [209]. In 1979, Kimura and Nagata showed that NDP kinase 

transphospatidylated GDP to GTP thus aiding in hormonal activation of adenylyl cyclase 

[210]. The GTP-supply of nm23H1 operated by NDP kinase serves to maintain maximal 

activation of G-protein coupled signaling. The idea that nm23H1 could act as a localized 

GEF for Arf6 was interesting. In support of this, Randazzo PA examined potential 

substrates for NDP kinase activity. They examined the nucleotide exchange activity of 

NDP kinase on purified Arf [211]. So I investigated if knockdown of Nm23H1 affected 

the status of GTP-bound Arf6. Data obtained from this study indicated a positive role for 

Nm23H1 in maintaining active form of Arf6. 

Next in my line of targets were the famed Rho class of G-proteins, Cdc42 and 

Rac1. Several laboratories have contributed the current understanding of Rho GTPases 

in insulin secretion. In particular, Cdc42 and Rac1 have been characterized in insulin-

secreting cells and their functional importances have been established. Time kinetics for 

glucose-induced activation of both proteins has been demonstrated. It is a well-

established fact that both Cdc42/Rac1 work together to cause insulin secretion upon 
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glucose stimulation. A study from Thurmond’s laboratory serves as evidence to suggest 

involvement of active Cdc42 in cytoskeletal rearrangement [139]. Using gene-silencing 

methodology, they showed glucose-mediated sequential activation of Cdc42 to PAK1 to 

Rac1 in insulin secretion. Using Clostridium difficle toxins, Kowluru et al., demonstrated 

a potential role for Rac1 in GSIS [212]. Further on, several studies were documented to 

define essential roles for Rac1. Both Cdc42 and Rac1 may be essential for regulating 

actin dynamics in phase of secretion. There are many regulatory factors like GEFs and 

GAPs. But what was the upstream signal that was required to activate these proteins? 

Studies done in primary human fibroblast cells clearly indicated an enhancing role of 

Arf6 on Rac1 in actin remodeling [213]. Soon, several other studies followed suit to 

indicate a regulatory role for Arf6 on activation of Rac1. In HeLa and CHO cells, Arf6 

influenced the redistribution of Rac1 from endosomes to cell periphery [213, 214]. An 

Arf6-dependent was also shown to be essential for polarized recruitment and activation 

of Cdc42 in astrocytes [215]. Another group demonstrated a role for active Arf1 to bind 

GAP of Cdc42 thus enabling it be activated by its GEF [216]. All the above evidences 

urged us to investigate if Arf6 had a regulatory hold on Cdc42/Rac1. Cells treated with 

secinH3 or transfected with siRNA-ARNO showed a reduction in GTP-bound forms of 

Cdc42/Rac1. These data indicated ARNO-activated Arf6 is an important upstream 

signal for the activation of Cdc42/Rac1. 
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Arf6/ARNO has been shown to activate several lipid-modifying enzymes like 

PI4P-5K and PLD to generate fusogenic lipids. The generated lipids aid in activating 

downstream effectors or in preparing the plasma membrane for fusion process [217, 

218]. 

 

 

 

 

 

 

 

 

Figure 6-2: An illustration to represent Arf6/ARNO-regulated membrane trafficking and 
actin rearrangement for secretion of vesicles in chromaffin cells [219]. 

Earlier observations also demonstrated potential involvement of PLD activation in the 

signaling mechanisms leading to GSIS [220, 221]. More recent findings by Ma and 

coworkers further implicated Arf6 in glucose-induced PLD activation in MIN6N8 cells, 

which suggested binding of Arf6 to PLD. Furthermore, brefeldin A, a known inhibitor of 

Arf6, decreased glucose-induced PLD activity and insulin secretion [147]. So when I 

investigated the effect of secinH3 on PLD activity, we found its activity to be reduced. 

A growing body of evidence pointed towards glucose-induced activation of 

ERK1/2 mediated via G-protein activation. Evidence from my own lab established a 

farnesylation-dependent signaling that leads to ERK1/2 activation in insulin secreting 

cells. And also several reports suggesting an Arf6-regulated activation of ERK1/2 [144, 

222] led us to investigate effect of secinH3 on activation of ERK1/2. SecinH3 was found 
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to inhibit the phosphorylation of ERK1/2 via glucose stimulation. This placed ERK/12 as 

a downstream effector of ARNO/Arf6 in the signaling cascade leading to insulin 

secretion. Whether Arf6/ARNO is a direct mediator of ERK1/2 activation needs to be 

investigated. 

Investigation of prenylation roles in Nox activation suggested a role for Rac1-

GTP in generation of ROS. And to test if Arf6/ARNO played a role in Rac1-mediated 

activation of Nox and generation of ROS, we used secinH3 and quantitated ROS 

generation. My findings provided in this document suggest a clear role for Arf6/ARNO 

mediated induction of ROS generation in both clonal pancreatic beta cells and rat islets. 

Several published reports indicated a role for small G-proteins, lipid-modifying enzymes, 

certain kinases and also ROS to bring about cytoskeletal remodeling in a stimulated 

cell.  

 

 

 

 

 

Figure 6-3: An illustration to represent regulatory factors that govern the activity of 
cofilin [223]. 

Arf6/ARNO by itself has been reported to act as actin remodeling agents. It is 

without doubt that breakdown of actin barrier is essential for insulin release. One among 
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the several actin-binding proteins, cofilin, was investigated in this aspect. Cofilin severs 

actin filaments by binding to F-actin and stabilizes the twisted filament [224].  

Cofilin activity is regulated by dephosphorylation/phosphorylaton at Ser3 [225]. 

Phosphorylation of cofilin does not confer any changes in protein conformation rather 

generates a charge repulsion that prohibits it from binding actin [226].   

 
Figure 6-3: An illustration to represent activity of cofilin as an actin-severing agent, 
promoting F-actin remodeling [223]. 

 

Phosphorylation of cofilin is regulated by LIMK, which lie downstream to Rho-

GTPases as seen in the illustration. Dephosphorylation is controlled by a phosphatase, 

specific to cofilin, slingshot. Glucose-induced dephosphorylation of cofilin activated the 

protein to severe actin filaments. Treatment of INS 832/13 cells with secinH3 attenuated 

dephosphorylation of cofilin via glucose.  

Having examined the exocytotic partners in insulin release, we tested if 

Arf6/ARNO played any role in endocytotic pathway as implicated in other cell types. In 

several cases, literature has demonstrated a large GTPase, dynamin, to be a major 

mediator of endocytosis. Recurring evidence suggested active dynamin to aid in 
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recycling of secretory vesicles after insulin release. A report published in Nature 

depicted an Arf6-regulated role of dynamin in endocytosis. It is likely that active Arf6 

regulated phosphorylation/dephosphorylation cycle of dynamin. This was confirmed with 

the use of secinH3 which inhibited dephosphorylation of dynamin.   

Several earlier studies have implicated activation of small G-proteins (e.g., Arf6, 

Cdc42 and Rac1) in physiological insulin secretion. Such conclusions were drawn from 

studies involving the use of Clostridial toxins, dominant negative mutants, siRNAs and 

inhibitors of post-translational modifications, including prenylation, carboxymethylation 

and palmitoylation [140].  To the best of our knowledge, the current study provides the 

first evidence to implicate carboxymethylation of Rac1 in the signaling cascade leading 

to glucose-induced ROS generation and insulin secretion. We have presented 

supporting evidence via two distinct approaches, namely siRNA-mediated knockdown 

or selective pharmacological inhibition of ICMT, which mediates the carboxymethylation 

of these signaling proteins. 

At least two distinct carboxylmethyl transferases have been identified in insulin 

secreting cells. The first one is involved in methylating the carboxy terminal leucine 

(Leu-309) of the catalytic subunit of protein phosphatase 2A; such a signaling step has 

been implicated in subunit interaction and catalytic activation of the enzyme [227]. The 

second enzyme, which is the focus of the current study, is the ICMT.  In a previous 

study, Li and associates characterized the ICMT in insulin-secreting cells and normal rat 

islets [182]. Such an activity was monitored by quantitating the degree of methylation of 

AFC by the islet ICMT in the presence of [3H] S-adenosylmethionine as the methyl 

donor. Subcellular fraction assays revealed that this enzyme activity is enriched in the 
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endoplasmic reticulum [182] Along these lines, using the pharmacological approaches, 

we have demonstrated that glucose promotes the carboxymethylation of Cdc42, 

another small G-protein involved in cytoskeletal remodeling and glucose-stimulated 

insulin secretion [75]. It was also demonstrated that the Gγ-subunits also undergo 

carboxymethylation in a glucose-sensitive manner in clonal β-cells, normal rat islets and 

human islets [77]. Not much has been reported since then with regard to potential 

functional consequences of carboxymethylation in islet function primarily due to lack of 

experimental tools (e.g., siRNA) to selectively deplete the expression of ICMT in 

isolated β-cells. Indeed, data from the current investigation further reinforce our original 

hypothesis that in addition to prenylation, carboxymethylation of specific G-proteins 

(e.g., Rac1) plays regulatory roles in physiological insulin secretion. Such regulatory 

effects may, in part, be due to the ability of methylated Rac1 to increase the activation 

of Nox and associated generation of reactive oxygen species.  

Data accrued in the current studies implicate carboxymethylation as one of the 

requisite signaling steps for glucose-induced activation by Rac1 in a stimulated β-cell. 

Moreover, the carboxymethylation of Rac1 appears to be necessary for glucose-

induced Nox activation and generation of reactive oxygen species. In this context, using 

reconstituted systems and the C-terminal Rac1 peptides, Kreck and coworkers have 

provided experimental support to implicate participatory roles for Rac1 in cell-free 

activation and assembly of NADPH-oxidase [228]. Compatible with these findings are 

our recent data to implicate inhibition of glucose- or mitochondrial-fuel-induced Nox 

activation and generation of reactive oxygen species in INS 832/13 cells and normal rat 

islets by inhibitors of protein prenylation. These studies thus provided evidence for 
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requisite roles for prenylation in the functional regulation of Nox in the islet β-cell [158]. 

Data from the current investigation indicate that in addition to prenylation, the 

carboxymethylation of specific G-proteins may be necessary for optimal regulation of 

Nox by glucose. More importantly, my current findings also suggest that 

carboxymethylation is necessary for glucose-induced activation of Rac1, since 

pretreatment of isolated β-cells with AFC or selective depletion of ICMT by siRNA 

markedly attenuated glucose-induced Rac1 activation.  These findings are in agreement 

with recent findings of Cushman and Casey demonstrating inhibition of EGF-induced 

Rho A and Rac1 activation by cysmethynil, a selective inhibitor of ICMT, in MDA-MD-

231 cells [229].  Together, based on the above discussion it is concluded that both 

prenylation and carboxymethylation of Rac1 are necessary for glucose-induced Nox-

mediated ROS generation and insulin secretion. It is important to note that 

palmitoylation of cysteine residues upstream to prenylated and carboxylmethylated 

Rac1 may not be involved in this signaling cascade at least based on recent studies 

from Roberts and associates who reported no known consensus palmitoylation motifs 

for Rac1 [230] although this remains to verified experimentally in the islet β-cell. 

Emerging evidence appears to implicate a significant contributory role for Nox in 

the generation of oxidative stress and the onset of mitochondrial dysfunction in multiple 

cell types, including the islet β-cell. For example, it has been shown that chronic 

exposure of isolated β-cells to high concentrations of saturated fatty acids (e.g., 

palmitate; lipotoxicity), glucose (i.e., glucotoxicity) or both (i.e., glucolipotoxicity) or a 

mixture of cytokines (e.g., IL-1β, TNFα and IFNγ) culminates in increased oxidative 

stress, mitochondrial dysfunction and apoptosis in these cells [231-233]. Inhibition of 
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protein prenylation of Rac1 by pharmacological approaches (e.g., GGTI-2147) or Rac1 

activation by Tiam1, a known guanine nucleotide exchange factor for Rac1 (using 

NSC23766) markedly attenuated metabolic dysfunction of the β-cell [232, 233]. Along 

these lines, data described herein suggest a significant increase in the expression of 

ICMT under glucolipotoxic conditions. It remains to be verified if such an increase in the 

expression translates into increased ICMT activity. Nonetheless, it may be likely that 

use of selective inhibitors of carboxymethylation might prove to be valuable in 

preventing oxidative stress induced under the duress of glucolipotoxicity and/or 

cytokines.  These are being studied in our laboratory currently. Based on the data 

accrued in the current studies we conclude that ICMT regulates glucose-induced Rac1 

activation, generation of reactive oxygen species and insulin secretion in pancreatic β-

cells. 

Synchronized with obesity epidemic, the incidence of T2DM is also increasing at 

an alarming rate. T2DM results from a failure of endocrine pancreas to secrete sufficient 

insulin to meet the metabolic demands due to acquired dysfunction of beta-cells along 

with decreasing beta-cell mass. Whether or not insulin secretory dysfunction is a cause 

for the dysfunction, beta-cell loss seems to play an important role in the pathogenesis of 

T2DM. As seen in obese individuals who do not develop diabetes exhibit an increase in 

beta-cell mass and a compensatory mechanism for the metabolic load. This very same 

beta-cell adaptation seems to have failed in obese individuals who developed T2DM. 

Several defects in insulin secretion are well documented in human T2DM; however the 

role in the pathogenesis and the possible clinical relevance of high frequency rapid 

pulsatile insulin secretion is still unclear. Chronic elevation of FFA and glucose has 
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been implicated to cause beta-cell dysfunction. Whereas acute exposure of beta-cells to 

FFA has been shown to stimulate insulin secretion, chronic exposure to FFA inhibits 

insulin secretion. Chronic elevation of blood glucose concentration impairs beta-cell 

function largely due to activation of oxidative stress and increased generation of ROS. 

Both conditions of gluco- and lipotoxicity attenuate GSIS in addition to downregulation 

of diverse groups of genes that are responsible for insulin biosynthesis and processing.  

In addition to the above factors that have been established in the progression to 

T2DM, several observations have suggested significant abnormalities in various 

intracellular signals that contribute to defective insulin secretion in G-protein knockout 

animal models. One example of this is the Rac1-null mice [βRac1-/- mice] were an 

impaired glucose tolerance and hypoinsulinemia was noticed [234]. This observation 

was in concordance with the in vitro studies in cultured beta-cells where GSIS was 

attenuated when function of Rac1 was compromised. In addition to its positive 

modulatory roles, Rac1 has been observed to negatively modulate metabolic 

dysfunction of beta-cells by participating in the generation of ROS. Numerous 

observations from our laboratory have demonstrated a role for Tiam1/Rac1/Nox 

signaling in beta-cell dysregulation under the duress of glucolipotoxicity. Both the 

activity and expression of Rac1 were increased in ZDF islets and in human islets 

exposed to glucotoxicity. 

Using the animal model Goto-Kakizaki [GK] rat, Metz et al reported that insulin 

secretory defects were due to a defect late in the signal transduction leading to 

exocytosis and not due to levels of insulin found in the cell.  And the secretory defect 

was corrected by the use of Mastoparan [Mas] proved that a G-protein involved in 
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exocytosis was responsible for the abnormality [235]. Another group used galparan to 

stimulate insulin secretion from islets derived from GK rat. They found galparan to 

stimulate secretion of insulin at a distal in stimulus-secretion [236]. Systematic 

approach to identify more G-proteins that are compromised during diabetic condtions 

need to be identified. 

Pancreatic beta-cell failure, starts early and progresses to T2DM, is a 

phenomenon that determines the progression from impaired glucose tolerance to overt 

diabetes. It has been demonstrated that a dysfunction in secretory process in ZDF islets 

is a result of altered expression of wide variety of genes. It includes both key factors 

involved in glucose-sensing and vesicle trafficking events. Data from G-protein knockout 

animal models definitely are promising and encourage the idea that G-protein signaling 

play an important role in insulin secretion and maintain optimal beta-cell mass. 

Additionally, evaluation of post-translational modifications and their enzymes need to be 

studied on the same importance as their substrate, small G-proteins. Posttranslational 

modifications have been an indispensable feature to for translocation or for membrane 

targeting. Roberts et al. provided sufficient evidence in favor of posttranslational 

modifications such as CAAX motif and methyltransferase [237]. Future studies, 

involving a systematic assessment of the above targets under diabetic conditions will be 

necessary to delineate their contribution to the secretory phenotype. 
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Chapter 7 

Conclusions and Future directions 

 On a concluding note, the vast expanse of research to understand the regulatory 

roles of small G-proteins has seen tremendous progress since early ‘90s. A review of 

the presented data and published evidence from multiple laboratories indicates a 

significant role for Arf6 in regulating GSIS from the pancreatic beta-cell. This is 

confirmed in a wide variety of insulin-secreting cells including clonal beta-cells, rat, 

mouse and human islets. As an added step, the regulatory factor GEF-ARNO for Arf6, 

has been implicated in modulating its activity upon stimulation. Herein, based on all the 

above evidences, I built a working model [Figure 7-1], for ARNO/Arf6 signaling cascade 

in the events leading insulin secretion with the probable key molecules [PLD, ERK1/2, 

Rac1, Nox, dynamin-1 and cofilin]. Apart from the regulatory factors for the small G-

proteins, I have determined posttranslational modification i.e., carboxylmethylation, on 

the activity of Rac1 and its role in insulin release and generation of ROS. 

 Future studies in light of the presented data will involve: 

1. Identifying whether PLD is upstream/downstream to ERK1/2 

2. What are the possible posttranslational modifications Arf6 undergoes in the event 

of insulin secretion. 

3. Does PLD regulate activity of dynamin-1? 

4. Determine the molecular events after exocytosis and how nm23H1/Arf6/dynamin-

1 regulate the recycling of vesicles after secretion. 
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Figure 7-1: Working model placing all the key players in the event leading to exo-
endocytosis of insulin-laden secretory granules. 
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Arf nucleotide binding site opener [ARNO] promotes sequential activation of
Arf6, Cdc42 and Rac1 and insulin secretion in INS 832/13 b-cells and rat islets
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1. Introduction

It is widely accepted that small G-proteins regulate various
cellular functions including proliferation, survival and demise. At
least four major classes of small G-proteins have been identified in
the pancreatic b-cell. These include the Ras, Rho, Rab and ADP-
ribosylation factor [Arf] family of G-proteins [1], of which Arf
family of G-proteins is less studied in the islet. Though originally
identified as an ADP-ribosylator for cholera toxin, Arf has gained
much importance as a critical modulator of membrane traffic in
eukaryotic cells. Among the six members of the Arf family, Arf6 is a
well-documented protein for its positive modulatory roles in

multiple cell types including regulation of various effector proteins
[e.g., phospholipase-D; PLD] and trafficking of secretory granules
to the plasma membrane for exocytosis [2]. Regazzi and coworkers
first described localization and regulation of Arfs in insulin-
secreting RINm5f cells [3,4]. More recently, Lawrence and
Birnbaum have demonstrated regulatory roles for Arf6 in insulin
secretion mediated by glucose, GTPgS and membrane depolariza-
tion. They further demonstrated that Arf6 regulates insulin
secretion by maintaining plasma membrane phosphatidylinosi-
tol-4,5-bisphosphate (PIP2; [5]). Existing evidence also supports a
potential role for PLD in physiological insulin secretion [6–8].

Arf6 cycles between the GDP-bound [inactive] and GTP-bound
[active] configurations; which are tightly regulated by two distinct
classes of regulatory factors namely the GTPase activating proteins
[GAPs] and the GTP/GDP exchange factors (GEFs; [9,10]). GAPs
inactivate Arf6 by promoting its conversion to the inactive GDP-
bound form, while GEFs facilitate its activation. The GEF activity is
a rate-defining step and involves coordination of multiple
intracellular signals. In this context, many GEFs with distinct size
and structure have been identified for Arf6 [11–16]. However, in
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A B S T R A C T

Glucose-stimulated insulin secretion [GSIS] involves interplay between small G-proteins and their

regulatory factors. Herein, we tested the hypothesis that Arf nucleotide binding site opener [ARNO], a

guanine nucleotide-exchange factor [GEF] for the small G-protein Arf6, mediates the functional

activation of Arf6, and that ARNO/Arf6 signaling axis, in turn, controls the activation of Cdc42 and Rac1,

which have been implicated in GSIS. Molecular biological [i.e., expression of inactive mutants or siRNA]

and pharmacological approaches were employed to assess the roles for ARNO/Arf6 signaling pathway in

insulin secretion in normal rat islets and INS 832/13 cells. Degrees of activation of Arf6 and Cdc42/Rac1

were quantitated by GST-GGA3 and PAK-1 kinase pull-down assays, respectively. ARNO is expressed in

INS 832/13 cells, rat islets and human islets. Expression of inactive mutants of Arf6 [Arf6-T27N] or ARNO

[ARNO-E156K] or siRNA-ARNO markedly reduced GSIS in isolated b-cells. SecinH3, a selective inhibitor

of ARNO/Arf6 signaling axis, also inhibited GSIS in INS 832/13 cells and rat islets. Stimulatory

concentrations of glucose promoted Arf6 activation, which was inhibited by secinH3 or siRNA-ARNO,

suggesting that ARNO/Arf6 signaling cascade is necessary for GSIS. SecinH3 or siRNA-ARNO also

inhibited glucose-induced activation of Cdc42 and Rac1 suggesting that ARNO/Arf6 might be upstream

to Cdc42 and Rac1 activation steps, which are necessary for GSIS. Lastly, co-immunoprecipitation and

confocal microscopic studies suggested increased association between Arf6 and ARNO in glucose-

stimulated b-cells. These findings provide the first evidence to implicate ARNO in the sequential

activation of Arf6, Cdc42 and Rac1 culminating in GSIS.
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the majority of the signaling events, only one member belonging to
the cytohesin family has been closely linked to activate Arf6
[13,14,17,18]. Recently, Hafner et al. reported a small molecule
inhibitor, secinH3, which selectively blocks ARNO-mediated
activation of Arf6 [19]. Previous studies have utilized secinH3 to
determine the regulatory roles for ARNO/Arf6 signaling in cellular
signal transduction [20,21].

In an attempt to identify precise regulatory mechanisms
involved in glucose-mediated activation of Rac1 and insulin
secretion, we first proposed [22] and subsequently confirmed
experimentally [23] that certain biologically active lipid second
messengers [e.g., PA, PIP2] promote dissociation of Rac1 from Rac1/
GDI complex to facilitate activation of Rac1 in rodent islets and
clonal b-cells. Therein, we also proposed that Arf6 could represent
one of the upstream regulators of Rac1 activation by generating
relevant lipid second messengers via phospholipase activation to
dissociate the Rac1/GDI complex [22,23]. Studies from Thurmond’s
laboratory have demonstrated the requirement of Cdc42, a Rho
family GTPase in the Rac1 activation process for actin remodeling
and insulin exocytosis [24,25]. The current study is undertaken to
test the hypothesis that ARNO mediates sequential activation of
Arf6, Cdc42 and Rac1 leading to GSIS. Using molecular biological
and pharmacological approaches we provide below the first
evidence to in support of this hypothesis in normal rodent islets
and insulin-secreting INS 832/13 cells.

2. Materials and methods

2.1. Materials

SecinH3 was from Tocris Biosciences [Ellisville, MO]. siRNA-
Arf6 consisting of pools of three to five target-specific 19–25 nt
siRNAs were from Santa Cruz Biotechnology [Santa Cruz, CA].
siRNA-ARNO was from Dharmacon [Lafayette, IL]. The rat insulin
ELISA kit was from American Laboratory Products [Windham, NH].
Antisera directed against Arf6, ARNO and Dbl were from Santa Cruz
Biotechnology [Santa Cruz, CA]. Cdc42 and Rac1 antisera were from
BD Biosciences [San Jose, CA]. Cdc42 and Rac1 activation kits were
from Cytoskeleton Inc. [Denver, CO]. Arf6 activation assay kit and
the Classic Co-IP kit were from PIERCE [Rockford, IL]. Alexa-fluor
secondary antibody was from Invitrogen Molecular Probes
[Carlsbad, CA]. All other reagents used in these studies were from
Sigma Aldrich Co. [St. Louis, MO] unless stated otherwise.

2.2. Insulin-secreting INS 832/13 cells, rat islets and human islets

INS 832/13 cells were kindly provided by Dr. Chris Newgard
(Duke University Medical Center, Durham, NC). The cells were
cultured in RPMI 1640 medium containing 10% heat-inactivated
fetal bovine serum supplemented with 100 IU/ml penicillin and
100 IU/ml streptomycin, 1 mM sodium pyruvate, 50 mM 2-
mercaptoethanol, 11 mM glucose, and 10 mM HEPES (pH 7.4).
Islets were isolated from pancreas of male Sprague–Dawley rats
(Harlan Laboratories, Oxford, MI), using collagenase digestion and
a ficoll gradient as we described previously [22]. All experiments
were reviewed and approved by the Wayne State University
Institutional Animal Care and Use Committee. Human pancreatic
islet lysates were kindly provided by Dr. Karl Olson [Michigan State
University, Lansing, MI].

2.3. Hydrophilic and hydrophobic phase partitioning method using

Triton X-114

Total hydrophobic and hydrophilic phases of lysates derived
from INS 832/13 cells and pancreatic islets were separated using
Triton X-114 according to method described earlier by us [22].

Briefly, about 400 mg of cell [INS 832/13 cell or islet] homogenate
protein, prepared in 400 ml of buffer (20 mM Tris–HCl, pH 7.5,
0.5 mM EGTA, 2 mM MgCl2, 10 mg/ml leupeptin, and 2 mg/ml
aprotinin), supplemented with 1% (w/v) Triton X-114 was overlaid
on 400 ml sucrose cushion 6% (w/v) prepared in 20 mM Tris–HCl
buffer (pH 7.4) containing 0.06% (w/v) Triton X-114. Following
brief incubation at 30 8C, samples were centrifuged at 300 � g for
3 min and the aqueous phase was mixed with 0.5% (w/v) fresh
Triton X-114 at 4 8C. Following dissolution, the mixture was again
overlaid on the same sucrose cushion, incubated for 3 min at 30 8C
and centrifuged at 300 � g for 3 min. The lower hydrophobic phase
was diluted to a final volume of 400 ml with homogenization
buffer, while the aqueous phase was transferred into a separate
tube supplemented with 2% fresh Triton X-114, incubated for
3 min at 30 8C, and centrifuged at 300 � g without sucrose cushion.
The supernatant obtained thereof served as total hydrophilic
phase. The relative abundance of ARNO in hydrophilic and
hydrophobic phases was determined by Western blotting.

2.4. Transfection of Arf6 or ARNO mutants and siRNAs

INS 832/13 cells were subcultured at 50–60% confluency and
transfected using Effectene [Qiagen, Valencia, CA], with 0.2 mg of
plasmid DNA constructs against either dominant-negative of Arf6
[T27N] or ARNO [E156K] per well of a 24-well plate. Endogenous
Arf6 or ARNO expression was depleted by transfecting cells using
small interfering RNA [siRNA; 100 nM] using HiPerfect transfec-
tion reagent [Qiagen, Valencia, CA]. Efficiency of mutant expres-
sion or protein knockdown was determined by Western blotting.

2.5. Insulin release studies

Arf6 or ARNO mutant or siRNA-transfected or secinH3
inhibitor-treated cells were cultured overnight in low serum
and low glucose containing medium and then stimulated either
with high glucose, KCl or arginine in Krebs–Ringer bicarbonate
buffer [KRB, pH 7.4] for different time intervals as indicated in the
text. In studies involving KCl-induced insulin secretion, we noticed
that INS 832/13 cells were not responsive to 40 mM KCl in
releasing insulin. However, higher KCl concentrations [60 mM]
were found to elicit robust insulin release. Therefore, in KCl-
stimulated insulin secretion studies, cells were incubated with
60 mM KCl in an osmolarity-balanced KRB medium [5]. For
arginine [L-Arg]-stimulated insulin release, a stock solution was
prepared in Tris�HCl [pH 7.4], and diluted to desired concentration
with KRB. The insulin released into the medium was quantitated by
ELISA [22].

2.6. Quantitation of Arf6�GTP in pancreatic b-cells

Active Arf6 was quantitated by a pull-down assay. Briefly, the
incubation medium was aspirated and cells were washed with ice-
cold PBS. Cells were lysed with 500 ml lysis buffer and the lysate
was clarified by centrifugation at 16,000 � g at 4 8C for 15 min and
incubated �400 mg protein with 100 ml of glutathione resin and
100 mg of GST-GGA3-PBD beads at 4 8C for 1 h with gentle rocking,
following which the reaction mixture was spun at 6000 � g for
30 s. The GST-tagged beads were washed [3�] and proteins were
separated by SDS-PAGE and activated Arf6 was identified by
Western blotting.

2.7. Quantitation of Cdc42 and Rac1 activation

Relative degree of activated Cdc42 and Rac1 [i.e., GTP-bound
form] was determined by p21-activated kinase-p21-binding
domain pull-down assay as described in [22]. Briefly, INS 832/
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13 cells treated with either diluent or secinH3 [50 mM] or cells
were either mock-transfected or transfected with ARNO-siRNA
were cultured overnight in low serum-low glucose media. Cells
were stimulated with either low [2.5 mM] or high [20 mM] glucose
for 3 or 30 min at 37 8C in the continued presence of either diluent
or secinH3 with respect to inhibitor studies. The GTP-bound forms
of Cdc42 and Rac1 in the pull-down samples were quantitated by
Western blotting and densitometry.

2.8. Co-immunoprecipitation studies

Immunoprecipitation studies were performed using the Classic
Co-IP kit as suggested by the manufacturer [26]. Briefly, b-cell
lysates [500 mg protein] were incubated with anti-ARNO for 2 h at
4 8C followed by incubation with agarose resin for an additional 1 h
at 4 8C. Beads were washed; eluted using sample buffer and
proteins were resolved by SDS page to quantify Arf6.

2.9. Immunofluorescence studies

INS 832/13 cells were plated onto coverslips and incubated
with [2.5 or 20 mM] glucose for 30 min at 37 8C followed by
washing in PBS and fixed with 4% paraformaldehyde solution for
15 min at room temperature. They were then permeabilized with
0.2% Triton X-100 for 15 min at room temperature. After blocking
with 1% BSA for 1 h, the cells were further incubated with primary
antibodies Arf6 [1:150] and ARNO [1:150] in 0.1% BSA solution for
1 h. After extensive washes, the cells were further incubated with
secondary antibodies Alexa-fluor 488 anti-mouse [1:1000] and
Alexa-fluor anti-goat 546 [1:1000] in 0.1% BSA solution for 1 h at
37 8C. The coverslips were then mounted on glass slides containing
mounting media [DAKO Corporation, Carpinteria, CA] and visual-
ized under a confocal LSM 510 microscope in the midplane using a
63� oil-immersion lens [26].

2.10. Statistical analyses

The statistical significance of the difference between the
experimental conditions was determined by Student’s t-test
unless mentioned otherwise. p values <0.05 were considered
significant.

3. Results

3.1. Distribution of ARNO in pancreatic b-cells

Data shown in Fig. 1A indicated that ARNO is expressed in
normal rat islets, human islets and INS 832/13 cells. The relative
abundance of ARNO in the total hydrophilic and hydrophobic
compartments [isolated from cell lysates using Triton X-114 phase
separation protocol; see Section 2] indicated that ARNO remains
associated with the hydrophilic compartment [Fig. 1B].

3.2. Molecular biological inhibition of Arf6 or ARNO attenuates insulin

release by various insulin secretagogues in INS 832/13 cells

We first verified potential consequences of overexpression of
dominant negative mutants of Arf6 or ARNO on GSIS from INS 832/
13 cells. To examine this, INS 832/13 cells were either mock-
transfected or transfected either with Arf6-T27N or ARNO-E156K
[see Section 2]. Transfection efficiency of mutants was verified by
Western blotting [Fig. 2A]. Insulin secretion was quantitated in
these cells in the presence of 2.5 or 20 mM glucose. Data in Fig. 2C
showed a marked reduction in GSIS in cells expressing Arf6-T27N.
Likewise, overexpression of ARNO-E156K, a mutant lacking the
GEF function, significantly inhibited GSIS in these cells [Fig. 2D].

Together, these data suggested key roles for Arf6 and ARNO in
signaling events leading to GSIS. Next, we verified if knockdown of
endogenous Arf6 and ARNO by using siRNA affects insulin secretion
elicited by high glucose. We observed 50–60% reduction in the
expression of Arf6 or ARNO by Western blotting analysis [Fig. 2B].
Under these conditions, GSIS was significantly inhibited in Arf6- and
ARNO-knocked-down cells [Fig. 2E and F]. Together, data in Fig. 2
[panels C–F] implicated Arf6/ARNO signaling axis in GSIS.

In the next series of studies, we determined potential roles of
Arf6 or ARNO in insulin secretion elicited by a membrane-
depolarizing concentration of KCl or arginine. To address this, INS
832/13 cells were transfected with either siRNA-Arf6 or siRNA-
ARNO, and insulin secretion in the presence of KCl [60 mM; Fig. 2G]
or arginine [20 mM; Fig. 2H and I] was quantitated. Data depicted
in Fig. 2 [panels G–I] demonstrated that insulin secretion elicited
by KCl or arginine was inhibited in cells in which the endogenous
Arf6 or ARNO was knocked-down. Together, data described in Fig. 2
implicate regulatory roles for ARNO/Arf6 in insulin secretion
elicited by a variety of secretagogues.

3.3. Glucose activates Arf6 in pancreatic b-cells

To further understand the role of Arf6 in stimulus-coupled
secretion, we next examined whether insulinotropic concentra-
tions of glucose activates Arf6 in the b-cell. This was accomplished
by using a recently developed GST-GGA3 pull-down assay, which
utilizes GGA proteins to capture activated forms of Arf6 by
interacting with the Arf-binding domain [27]. Efficiency and
specificity of the activation assay was confirmed by the ability of
GTPgS to stimulate Arf6 activation in broken cell preparations
[additional data not shown]. A time-course study for Arf6
activation by glucose [Fig. 3A and B] suggested that glucose-
induced activation was seen as early as 1 min and reached

Fig. 1. Expression of ARNO in INS 832/13 cells, rat islets and human islets. Panel A:

lysates from rat islets, human islets and INS 832/13 cells were separated by SDS-

PAGE and probed for ARNO [48 kDa]. Panel B: hydrophilic [HPL] and hydrophobic

[HPB] phases of the homogenates from rat islets and INS 832/13 cells were isolated

using Triton X-114 partition technique [see Section 2 for additional details].

Proteins were separated by SDS-PAGE and probed for ARNO. A representative blot

from three independent experiments is shown here.
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Fig. 2. Overexpression of inactive mutants or siRNA-Arf6 or siRNA-ARNO markedly inhibits glucose-induced insulin secretion in INS 832/13 cells. Panel A: INS 832/13 cells

were either mock-transfected or transfected with dominant mutants of Arf6 [T27N] or ARNO (E156K; see Section 2). Relative degrees of expression of the mutants were

verified by Western blotting. A representative blot from three independent studies yielding similar results is provided here. Panel B: INS 832/13 cells were either mock-

transfected or transfected with siRNA-Arf6 or siRNA-ARNO as described in Section 2. Relative degrees of knockdown of these proteins were verified by Western blotting. A

representative blot from three independent studies yielding similar results is shown here. Panel C: INS 832/13 cells were transfected with dominant negative Arf6 [T27N] at a

final concentration of 0.2 mg of DNA and cultured for 48 h. Following this, cells were stimulated with either low [2.5 mM] or high [20 mM] glucose in KRB for 30 min at 37 8C.

Insulin released into the media was quantitated and expressed as ng/ml. Data are mean � SEM from three independent experiments. * represents p < 0.05 vs. mock low glucose;

**p < 0.05 vs. mock transfected cells treated with high glucose, and data points with similar symbol did not differ significantly. Panel D: INS 832/13 cells were transfected with

dominant negative ARNO [E156K] at a final concentration of 0.2 mg of DNA and cultured for 48 h following which cells were stimulated with either low [2.5 mM] or high [20 mM]

glucose for 30 min at 37 8C. Insulin released into the medium was quantitated and expressed as ng/ml. Data are mean � SEM from three independent experiments. * represents

p < 0.05 vs. mock transfected low glucose and **p < 0.05 vs. mock transfected high glucose, and data points with similar symbol do not differ significantly. Panel E: INS 832/13 cells

were either mock-transfected or transfected with Arf6-siRNA at a final concentration of 100 nM. After 48 h culture in regular medium, cells was stimulated with low [2.5 mM] or

high [20 mM] glucose for 30 min. Insulin released into the medium was quantitated and expressed as ng/ml. Data are mean � SEM from three independent experiments.

* represents p < 0.05 vs. mock low glucose; **p < 0.05 vs. mock transfected cells treated with high glucose, and data points with similar symbol did not differ significantly. Panel F:

INS 832/13 cells were either mock-transfected or transfected with ARNO-siRNA at a final concentration of 100 nM. After 48 h culture in regular medium, cells were stimulated with low
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optimum at 3 min time point. Even though, we noticed a reduction
in activated Arf6 at 5 min time point, Arf6 remained active
[Arf6�GTP] above basal till 30 min [additional data not shown].
Together, these data suggest that Arf6 activation might represent
one of the early signaling steps leading to GSIS [see below].

3.4. siRNA-mediated knockdown of ARNO or pharmacological

inhibition of ARNO/Arf6 signaling results in attenuated glucose-

induced activation of Arf6

The conversion of the GDP-bound inactive forms of G-
proteins to their GTP-bound active state is mediated by GEFs.
The above data prompted us to investigate if ARNO represents
one of the GEFs for glucose-mediated activation of Arf6. This was
verified by two complementary methods. In the first, glucose-
induced activation of Arf6 was examined in cells in which ARNO
expression was reduced by siRNA-ARNO. Data in Fig. 4A and B
indicated complete inhibition of glucose-induced activation of
Arf6 under these conditions. This was further verified by a
second approach involving pharmacological inhibition of ARNO/
Arf6 signaling by secinH3 [19–21]. Data in Fig. 4C and D
suggested a complete inhibition of glucose-induced activation of
Arf6 by secinH3. Taken together, these data indicate that
glucose-induced activation of Arf6 requires the intermediacy of
ARNO.

3.5. SecinH3 markedly attenuates GSIS in INS 832/13 cells and rat

islets

As a logical extension to the above studies, we next investigated
potential impact of pharmacological inhibition of ARNO on GSIS in
INS 832/13 cells and normal rat islets. Data in Fig. 5 demonstrated
complete inhibition of GSIS by secinH3 in INS 832/13 cells [Fig. 5A]
and normal rat islets [Fig. 5B]. Under these conditions secinH3
failed to increase basal secretion in either INS 832/13 cells or rat
islets [Fig. 5A and B]. It should be noted that inhibitory effects of
secinH3 on Arf6 activation [Fig. 4] or GSIS [Fig. 5] were not due to
its cytotoxic effects since we noticed no significant effects of this
inhibitor on the metabolic cell viability of b-cells under these
conditions [not shown]. Together, these pharmacological data
confirm the above molecular biological data to support our
hypothesis that ARNO/Arf6 signaling cascade plays a positive
modulatory role in GSIS.

3.6. siRNA-mediated knockdown of ARNO or pharmacological

inhibition of ARNO leads to marked reduction in glucose-induced

activation of Rac1 and Cdc42

Several recent studies, including our own, have implicated Rho
subfamily of small G-proteins [e.g., Cdc42 and Rac1] in cytoskeletal
remodeling leading to the translocation of insulin-laden secretory

Fig. 2. (Continued). [2.5 mM] or high [20 mM] glucose for 30 min. Insulin released into the medium was quantitated and expressed as ng/ml. Data are mean � SEM from five

independent experiments. * represents p < 0.05 vs. mock transfected low glucose; **p < 0.05 vs. mock transfected high glucose. Insulin release values between mock low glucose

and siRNA transfected low glucose did not differ significantly. Panel G: INS 832/13 cells were either mock-transfected or transfected with ARNO-siRNA at a final concentration of

100 nM. After 48 h culture in regular medium, cells were stimulated with low [2.5 mM] or KCl [60 mM; osmolarity adjusted] for 60 min. Insulin released into the medium was

quantitated and expressed as ng/ml. Data are mean � SEM from three independent experiments. * represents p < 0.05 vs. mock-transfected low glucose; **p < 0.05 vs. mock

transfected K+. Insulin release values between mock low glucose and siRNA transfected low glucose did not differ significantly. Panels H and I: INS 832/13 cells were mock-

transfected or transfected either with Arf6-siRNA/ARNO-siRNA at a final concentration of 100 nM. After 48 h culture in regular medium, cells were stimulated with 1 mM glucose

[Glu] or 1 mM glucose + 20 mM arginine [L-Arg] for 15 min. Insulin released into the medium was quantitated and expressed as percent of control. Data are mean � SEM from

replicates. * represents p < 0.05 vs. mock-transfected 1 mM glucose; **p < 0.05 vs. mock-transfected 1 mM Glu + 20 mM L-Arg. Insulin release values between mock and siRNA

transfected under low glucose [1 mM] conditions did not differ significantly.
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granules to the plasma membrane for fusion and exocytotic
secretion of insulin [28,29]. In this context, recent evidence
appears to suggest a significant cross-talk between ARNO/Arf6 and
Rac1 in the regulation of cell function in multiple cell types [30–
35]. Therefore, we asked if ARNO/Arf6 signaling axis regulates
glucose-induced Rac1 activation in the pancreatic b-cell. We
addressed this question by quantitating glucose-induced Rac1
activation in INS 832/13 cells in which ARNO function is
compromised via pharmacological [e.g., secinH3] or molecular
biological [e.g., siRNA-ARNO] approaches. As expected, we noticed
a significant Rac1 activation in control cells exposed to glucose
[Fig. 6A]. Interestingly, siRNA-mediated knockdown of ARNO
increased Rac1 activation under basal glucose conditions. Howev-
er, glucose-induced activation of Rac1 was completely inhibited in
ARNO-depleted b-cells [Fig. 6A]. Likewise, pharmacological
inhibition of ARNO/Arf6 signaling axis with secinH3 abolished
glucose-induced activation in these cells [Fig. 6B] suggesting that
ARNO/Arf6 signaling step might be upstream to the Rac1 activation
step in the cascade of events leading to GSIS. These data, which are
compatible with our original proposal [22] also fit into the time-
frame for glucose-induced activation of these proteins. We noticed
in this study that Arf6 activation is seen as early as 1 min while
glucose-induced activation of Rac1 is maximal at 15–20 min
[28,29].

Along these lines, earlier studies from our laboratory have
suggested that the carboxylmethylation of Cdc42 is stimulated by
glucose within 1 min of exposure [36]. More recent and
comprehensive investigations by Thurmond’s group [24,25] have

reported glucose-induced activation of Cdc42 within 3 min of
exposure. They also demonstrated that Cdc42 activation is
upstream to Rac1 activation in the cascade of events leading to
GSIS [25]. Therefore, we examined if inhibition of ARNO/Arf6
signaling step affects Cdc42 activation. Our findings suggested
�50% inhibition of glucose-induced activation of Cdc42 in INS 832/
13 cells following inhibition of ARNO/Arf6 by secinH3 [Fig. 6C].
Together, our findings are suggestive of sequential activation of
Arf6, Cdc42 and Rac1 by ARNO in glucose-stimulated b-cell
culminating in insulin secretion.

It should be noted that recent investigations from our
laboratory have described the roles for Tiam1, a GEF for Rac1 in
GSIS. For example, we have shown that siRNA-mediated knock-
down of Tiam1 or pharmacological inhibition of Tiam1/Rac1
signaling axis [e.g., NSC23766] markedly attenuated GSIS in INS
832/13 cells [37]. Along these lines, Western blot data indicated
expression of Dbl, a known GEF for Cdc42 [38], in INS 832/13 cells,
normal rat islets and human islets [Fig. 6D]. Together, these data
are suggestive expression of at least three GEFs [i.e., ARNO, Tiam1
and Dbl] in the islet b-cell. Potential cross talk between these GEFs,
if any, in the context of GSIS, remains to be verified.

3.7. Glucose promotes association between Arf6 and ARNO in

pancreatic b-cells

In the last series of studies we utilized co-immunoprecipitation
and immunofluorescence approaches to further determine if
exposure of isolated b-cells to an insulinotropic concentration
of glucose promotes association between Arf6 and ARNO. Data
shown in Fig. 7A indicate detectable levels of Arf6 in ARNO
immunoprecipitates suggesting that these two proteins stay
complexed under basal conditions. Moreover, incubation of these
cells with stimulatory glucose resulted in a significant increase
[�2-fold] in the amount of Arf6 in the ARNO immunoprecipitates
[Fig. 7B]. Together, these data suggest that glucose promotes
physical association between ARNO and Arf6 in insulin-secreting
cells. We verified these findings via a complementary immunoflu-
orescence approach. Data in Fig. 7C suggested that both Arf6
[green] and ARNO [red] remain diffused throughout the cell under
basal conditions [2.5 mM glucose]. Merged images of subpanels a
and b in Fig. 7 [i.e., subpanel c] further suggested that the two
proteins remain localized in the cytosolic compartment. However,
exposure of these cells to a stimulatory concentration of glucose
[20 mM] led to a significant association of these proteins as
evidenced in the merged images of subpanels d and e of Fig. 7 [i.e.,
subpanel f]. Together, these findings [Fig. 7] provide evidence for
increased association of Arf6 and ARNO in the presence of glucose
leading to the activation of ARNO/Arf6 signaling pathway followed
by sequential activation of Cdc42/Rac1 culminating in insulin
secretion.

4. Discussion

It is widely accepted that the Arf family of G-proteins play a key
regulatory role in membrane trafficking [9]. Among these, Arf6 is
well studied and has been shown to regulate several cellular events
including cell motility, vesicular transport, and cortical actin
rearrangements [17,32,39]. In addition, Arf6 has been shown to
activate several G-proteins and enzymes of lipid metabolism
including PLD to generate fusogenic lipids such as PA and PIP2

[40,41]. Such experimental evidence led to the postulation that
Arf6 might represent one of the G-proteins whose activation may
be necessary for the trafficking of secretory vesicles to the plasma
membrane and fusion to lease their contents into the circulation.

The functions of Arf6 are regulated by factors such as GEFs.
Despite compelling evidence in many cell types, little is known

Fig. 3. Time-dependent activation of Arf6 by glucose in pancreatic b-cells. Panel A:

INS 832/13 cells were incubated with KRB for 1 h and either left unstimulated

[diluent] or stimulated with high glucose [20 mM] for different time points as

indicated. Cell lysates were used for detecting activated Arf6 [Arf6�GTP] by GST-

GGA3-PBD pull down assay [see Section 2]. Total Arf6 was used as the loading

control and a representative blot from three independent experiments is shown.

Panel B: densitometric quantitation of Arf6 activation depicted in panel A is shown

here. * represents p < 0.05 vs. diluent. Statistical analysis was performed using one-

way ANOVA, all pairwise multiple comparison method (Dunnetts’).
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Fig. 4. Molecular biological or pharmacological inhibition of ARNO attenuates glucose-induced activation of Arf6 in INS 832/13 pancreatic b-cells. Panel A: INS 832/13 cells

were either mock-transfected or transfected with siRNA-ARNO and cultured for 48 h following which cells were stimulated in the presence of either low glucose [LG, 2.5 mM]

or high glucose [HG, 20 mM] for 30 min at 37 8C. The relative amounts of activated Arf6 [i.e., Arf6�GTP] were determined by pull down assay. Total Arf6 from cell lysates was

used as the loading control and a representative blot from three independent experiments is shown. Panel B: data shown in the panel A were analyzed densitometrically and

expressed as fold change in Arf6�GTP over basal and are mean � SEM of three independent experiments. * represents p < 0.05 vs. mock transfected low glucose; **p < 0.05 vs.

mock transfected high glucose, and data points with similar symbol do not differ statistically. Panel C: INS 832/13 cells were incubated overnight in the presence or absence of

secinH3 [50 mM] and stimulated with either low glucose [LG, 2.5 mM] or high glucose [HG, 20 mM] in the continuous presence or absence of secinH3 [50 mM] for 30 min. Relative

degrees of Arf6 activation were quantitated as described in panel A. Total Arf6 from cell lysates was used as the loading control and a representative blot from three independent

experiments is shown. Panel D: data shown in the panel C are analyzed densitometrically and expressed as fold change in Arf6�GTP over basal. Data are mean � SEM from three

independent experiments. * and # represent p < 0.05 vs. low glucose without secinH3; and **p < 0.05 vs. high glucose without secinH3.

Fig. 5. SecinH3, a selective inhibitor of ARNO attenuates GSIS in INS 832/13 cells and normal rat islets. Panel A: INS 832/13 cells were incubated in low serum-low glucose

overnight in the continuous presence of 50 mM secinH3 or diluent and stimulated with either low [LG, 2.5 mM] or high glucose [HG, 20 mM] for 30 min in KRB. Insulin

released into the medium was quantitated by ELISA and expressed as ng/ml. Data are mean � SEM from four independent experiments. * represents p < 0.05 vs. low glucose

without secinH3; **p < 0.05 vs. high glucose without secinH3 and data points with similar symbol do not differ statistically. Panel B: normal rat islets were incubated in low serum-

low glucose overnight in the continuous presence of either 50 mM secinH3 or diluent and stimulated with either low [LG, 2.5 mM] or high glucose [HG, 20 mM] for 30 min in KRB.

Insulin released into the medium was quantitated by ELISA. Data are expressed as ng/ml insulin released and are mean � SEM from four independent experiments. * represents

p < 0.05 vs. low glucose with secinH3 and without secinH3; and **p < 0.05 vs. high glucose without secinH3. Data points with similar symbol do not differ significantly.
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with regard to regulatory factors for Arf6 in b-cells. Therefore, in
the current study, we tested the hypothesis that ARNO mediates
the functional activation of Arf6, and that the ARNO/Arf6 signaling
cascade, in turn, controls the activation of downstream regulatory
proteins including Cdc42 and Rac1 leading to GSIS. In the present
study we demonstrated that ARNO might subserve the function of
a GEF for Arf6 in the islet b-cell. Salient features of our study are: [i]
ARNO is expressed in clonal b-cells, rodent islets and human islets;
[ii] overexpression of inactive mutants of ARNO or Arf6 or siRNAs
of Arf6 or ARNO reduces insulin secretion elicited by glucose,
arginine and KCl in insulin-secreting cells; [iii] secinH3, a selective
inhibitor of ARNO/Arf6 signaling pathway, also inhibits GSIS in INS
832/13 cells and rodent islets; [iv] insulinotropic concentration of
glucose stimulates Arf6 activation; [v] glucose-induced Arf6
activation is inhibited by secinH3 or siRNA-ARNO, suggesting a
critical involvement of ARNO/Arf6 in insulin secretion; [vi]
pharmacological or molecular biological inhibition of ARNO/Arf6
inhibits glucose-induced activation of Cdc42 and Rac1; and [vii]
glucose promotes association between ARNO and Arf6 as
evidenced by co-immunoprecipitation and confocal microscopic

studies. These findings provide the first evidence to implicate novel
roles for ARNO in insulin secretion.

Regazzi et al. first reported [3,4] that incubation of permea-
bilized RINm5F cells with non-hydrolyzable analogs of GTP
resulted in a significant redistribution of otherwise cytosolic Arfs
to the Golgi and plasma membrane compartments. Based on these
and insulin secretion data, they concluded that Arf is subjected to
cycling between the membrane and soluble compartments and
this cycling is governed by regulatory factors to mediate insulin
secretion in clonal b-cells. And more recently Lawrence and
Birnbaum demonstrated regulatory roles for Arf6 in insulin
secretion from MIN6 cells [5]. Using adenoviral expression
protocols involving the wildtype, dominant negative and consti-
tutively active Arf6 mutants, these investigators provided compel-
ling evidence to implicate regulatory roles for Arf6 in glucose-, KCl-
and GTPgS-induced insulin secretion. Along these lines, at least
two other recent studies have verified roles for Arf6 in islet
function and insulin secretion. Grodnitzky et al. have demonstrat-
ed a role for EFA6A, another GEF for Arf6 in somatostatin-mediated
activation of PLD in clonal b [HIT-T15] cells. Interestingly,

Fig. 6. Molecular biological or pharmacological inhibition of ARNO function attenuates glucose-induced Rac1 or Cdc42 activation in INS 832/13 cells. Panel A: INS 832/13 cells

were either mock-transfected or transfected with siRNA-ARNO at a final concentration of 100 nM and after 48 h culture, cells were stimulated with either low glucose [LG,

2.5 mM] or high glucose [HG, 20 mM] for 30 min at 37 8C. The relative amounts of activated Rac1 [i.e., Rac1�GTP] were quantitated by PAK-PBD pull down [see Section 2 for

additional details]. Total Rac1 from cell lysates was used as the loading control. Data were analyzed densitometrically and expressed as fold change in Rac1�GTP over basal.

Data are mean � SEM of five independent experiments. * and # represent p < 0.05 vs. low glucose without siRNA-ARNO; and **p < 0.05 vs. high glucose without siRNA-ARNO. Panel

B: INS 832/13 cells were cultured overnight in the presence or absence of secinH3 [50 mM] and further stimulated with low glucose [LG, 2.5 mM] and high glucose [HG, 20 mM] for

30 min in the continuous presence or absence of secinH3. The relative amounts of activated Rac1 [i.e., Rac1�GTP] were determined by PAK-PBD pull down assay as described in panel

A. Total Rac1 from cell lysates was used as the loading control. Data were analyzed densitometrically and expressed as fold change in Rac1�GTP over basal and are mean � SEM of

three independent experiments. * represents p < 0.05 vs. low glucose without secinH3; **p < 0.05 vs. high glucose without secinH3, and data points with similar symbol do not differ

statistically. Panel C: INS 832/13 cells were starved overnight in the presence or absence of secinH3 [50 mM] and were stimulated with low glucose [LG, 2.5 mM] and high glucose

[HG, 20 mM] for 3 min in the continuous presence or absence of secinH3. The relative amounts of activated Cdc42 [i.e., Cdc42�GTP] was determined by PAK-PBD pull down assay.

Total Cdc42 from cell lysates was used as the loading control. Data were densitometrically analyzed and is expressed as fold change in Cdc42�GTP over basal and are mean � SEM of

three independent experiments yielding similar results. * and ** represent p < 0.05 vs. low glucose without secinH3 and #p < 0.05 vs. high glucose without secinH3. Panel D: lysates

from rat islets, human islets and INS 832/13 cells were separated by SDS-PAGE and probed for Dbl by Western blotting.
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however, this pathway appears to be distinct from glucose-
mediated effects in INS 832/13 cells and normal rat islets [current
study] since overexpression of inactive ARNO mutant [E156K]
failed to affect somatostatin-induced PLD activation [42]. More
recent findings by Ma and coworkers further implicated Arf6 in
glucose-induced PLD activation in MIN6N8 cells, which suggested

binding of Arf6 to PLD. Furthermore, brefeldin A, a known inhibitor
of Arf6, decreased glucose-induced PLD activity and insulin
secretion [43].

What then is the potential connection between glucose-
induced ARNO/Arf6 signaling cascade and Rac1 activation that
we have demonstrated in the current study? We proposed earlier

Fig. 7. Glucose promotes association between Arf6 and ARNO in INS 832/13 cells. Panel A: co-immunoprecipitation studies: herein, INS 832/13 cells were incubated in the presence

of low glucose [LG, 2.5 mM] or high glucose [HG, 20 mM] for 30 min at 37 8C. ARNO was immunoprecipitated in the lysates using a specific antibody as described in Section 2. The

immunoprecipitates were separated by SDS-PAGE and probed for Arf6. A representative blot from three studies is shown. Panel B: data from multiple studies shown in panel A are

analyzed densitometrically and expressed as densitometric units and are mean� SEM. * represents p < 0.05 vs. low glucose. Panel C: immunofluorescence studies using confocal

microscopy: INS 832/13 cells were cultured on coverslips and cultured overnight prior to the incubation with either 2.5 mM or 20 mM glucose for 30 min at 37 8C. The cells were fixed in

4% paraformaldehyde solution in PBS for 15 min and permeabilized using 0.2% triton X-100 for 15 min. Fixed cells were examined for Arf6 [stained in green] and ARNO [stained in red] as

described under Section 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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[22] that Rac1 activation might be downstream to Arf6 in the
signaling events leading to GSIS. More recently we have provided
further evidence to suggest that biologically active, fusogenic lipids
regulate Rac1 signaling in the b-cell [23]. For example, using
lysates derived from normal rat islets and INS 832/13 cells we have
demonstrated that these lipids promote the dissociation of Rac1/
GDI complex, which is necessary for the membrane translocation
and activation of Rac1 [23]. Earlier observations also demonstrated
potential involvement of PLD activation in the signaling mechan-
isms leading to GSIS [6,7,44–46]. Therefore, it is reasonable to

speculate that glucose-induced Arf6-mediated activation of PLD1
[43] results in biologically active, fusogenic lipids, which, in turn,
facilitate the dissociation of Rac1/GDI complex and leading to the
translocation, membrane association and activation of Rac1
culminating in the cytoskeletal remodeling and fusion of granules
with the plasma membrane. This remains to be verified
experimentally.

Our current findings from the time course studies suggested
that Cdc42 activation [�3 min] step as an intermediate between
Arf6 [�1 min] and Rac1 [�20 min] activation. In support of
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Arf6.GTP

ARNOsiRNA-ARNO

secinH3

ARNO-E156K

siRNA-Arf6

Arf6-T27N

Generation of biologically active lipds [5, 39]

Activation of Rac1

Activation of Cdc42

??

siRNA-Cdc42

[45]

[25]

Rac1.GTP

Activation of Rac1

INSULIN RELEASE

Fig. 8. A proposed mechanism for ARNO signaling axis in GSIS via sequential activation of Arf6, Cdc42 and Rac1 in pancreatic b-cells: based on the data described herein and

our previously published data [22,23], we propose a model for potential involvement of ARNO as a GEF for Arf6 in promoting GSIS in pancreatic b-cells. We propose that

glucose activates islet endogenous ARNO to facilitate the conversion of inactive GDP-bound Arf6 to its GTP-bound biologically active conformation. Essential nature for ARNO

in this signaling cascade was demonstrated via the use of molecular biological [E156K mutant and siRNA-ARNO] and pharmacological approaches [e.g., secinH3]. A role for

Arf6 in GSIS was confirmed via molecular biological [i.e., Arf6-T27N mutant and siRNA-Arf6] approaches. These data confirm the original observations of Lawrence and

Birnbaum [5]. We propose that the activation of ARNO/Arf6 signaling pathway leads to the activation of PLD [43] leading to the generation of fusogenic lipids [e.g., PA], which

in turn, promote dissociation of Rac1/GDI complexes leading to the activation and membrane association of Rac1 [22,23]. Our time course studies also suggest that ARNO-

mediated activation of Cdc42 [within 1 min] is upstream to Rac1 activation [15–20 min] together suggesting that ARNO facilitates sequential activation of Arf6, Cdc42 and

Rac1 to promote insulin secretion. Potential mechanisms underlying Arf6 mediated activation of Cdc42 remain to be determined. It might include dissociation of Cdc42/GDI

complex by biologically active lipids as in the case of Rac1 [21,22] or inhibition of GAP activity specific for Cdc42 by ARNO/Arf6 signaling pathway [see Section 4]. These

aspects are being investigated in our laboratory currently.
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sequential activation of Arf6, Cdc42 and Rac1, our current data
demonstrated that inhibition of ARNO/Arf6 signaling leads to
inhibition of Cdc42 and Rac1. Findings from Thurmond’s laborato-
ry have clearly demonstrated that Cdc42 plays an upstream
regulatory role to Rac1 in GSIS [25]. Based on these findings, we
propose that GSIS involves sequential activation of ARNO-
mediated stimulation of Arf6, Cdc42 and Rac1 as shown below.

However, it remains to be verified if Cdc42 activation
mechanism by ARNO/Arf6 also involves the dissociation of
Cdc42/GDI complexes by biologically active lipids as in the case
of Rac1 [23]. Further, it is likely that ARNO/Arf6-mediated Cdc42
activation in the b-cell might involve a mechanism similar to the
one described in MCF7 cells by Dubois et al. [47]. These
investigators have demonstrated that active Arf proteins bind to
Cdc42. GTPase activating protein thereby preventing its GAP
function and retain Cdc42 in the GTP-bound active conformation.
Such a possibility remains to be verified for Arf6 in the islet.

Lastly, our current studies identify ARNO as one of the GEFs for
glucose-induced activation of Arf6. The list of G-protein regulatory
factors involved in GSIS continues to grow. Along these lines, we
have identified Tiam1 as one of the GEFs for Rac1 [37]. Rho-GDI
appears to subserve the roles of GDI for Cdc42 and Rac1 [29]. The
above described Western blot data are suggestive of localization of
Dbl, a known GEF for Cdc42, in INS 832/13 cells, normal rat islets
and human islets. Studies are underway to determine potential
cross-talk between various GEFs and their corresponding G-
proteins in the cascade of events leading to insulin secretion.

In conclusion, based on the existing experimental data including
those described herein, we propose a mechanism [Fig. 8] involved in
GSIS in pancreatic b-cells involving ARNO/Arf6 signaling steps. We
propose that GSIS involves ARNO-mediated conversion of GDP-Arf6
[inactive] to GTP-Arf6 [active]. We verified this by overexpression of
dominant negative mutants of ARNO and Arf6 as well as siRNA-
mediated knockdown of these proteins in pancreatic b-cells. This
postulation was further supported by our findings of pharmacologi-
cal inhibition of glucose-induced ARNO-mediated activation of Arf6
by secinH3. Based on the data described herein and our previously
published data [22,23], it is likely that glucose metabolic events lead
to the activation of endogenous phospholipases, including PLD
[44,45] and the subsequent generation of biologically active lipid
second messengers [e.g., PA and PIP2], which, in turn, facilitate the
dissociation of Rac1/GDI complex for attaining the GTP-bound active
conformation [23]. Potential involvement of ARNO/Arf6-mediated
activation of Cdc42 and Rac1 via PLD remains to be verified. Finally,
as we demonstrated previously [48], it is also likely that biologically
active lipids could exert direct effects on the functional activation of
specific GTPases by increasing their GTP binding function and
decreasing their GTPase activities thereby retaining putative G-
proteins in their GTP-bound active conformation [29].

Lastly, it may be germane to point out that data described above
implicated regulatory roles for ARNO/Arf6 signaling axis in insulin
secretion elicited by KCl. Our current observations are compatible
with studies of Lawrence and Birnbaum implicating a role for Arf6
in KCl-induced insulin secretion [5]. However, it remains to be seen
if ARNO/Arf6 signaling cascade regulates additional pathways
which are independent of Cdc42/Rac1 activation in insulin-
secreting cells. Such an examination is necessary since recent

studies have clearly implicated non-regulatory roles for Cdc42/
Rac1 signaling pathways in KCl-induced insulin secretion ([28,29]
and references therein). To the best of our knowledge, very little is
known with regard to potential involvement of small G-proteins
[e.g., Rac1] in insulin secretion facilitated by amino acids, such as
arginine. These aspects, which are not included in the current
model [Fig. 8], are being investigated in our laboratory currently.
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Introduction

It has been known for a long time that both monomeric G-proteins 
(e.g., Rac1 and Cdc42) and the γ-subunits of heterotrimeric 
G-proteins (Gγ subunits) undergo post-translational modifica-
tions, such as isoprenylation and methylation at their C-terminal 
cysteine residues (often referred to as the CAAX motif).1,2 The 
first of the four step modification sequence includes incorpora-
tion of mevalonic acid-derived farnesyl or geranylgeranyl iso-
prenoid moiety onto the C-terminal cysteine. This is followed by 
the proteolytic cleavage of—AAX peptide by the Ras-converting 
enzyme1 (Rce1) endoprotease of microsomal origin, which leads 
to methylation of the prenylated cysteine by the carboxyl methyl 
transferase (ICMT) in the presence of S-adenosyl methionine 
serving as the methyl donor.3 It is widely accepted that the pre-
nylation and carboxymethylation modification steps increase the 

Isoprenylcysteine carboxyl methyltransferase (ICMT) catalyzes the post-translational methylation of C-terminal 
cysteines of isoprenylated proteins, including small G-proteins and the γ-subunits of heterotrimeric G-proteins. It is 
widely felt that carboxymethylation promotes efficient membrane association of the methylated proteins and specific  
protein-protein interactions. In the current study, we tested the hypothesis that ICMT-mediated carboxymethylation of 
specific proteins (e.g., Rac1) plays a regulatory role in glucose-stimulated insulin secretion (GSIS). Western-blot analysis 
indicated that lCMT is expressed and predominantly membrane associated in INS 832/13 β-cells. siRNA-mediated 
knockdown of endogenous expression of ICMT markedly attenuated glucose, but not KCl-induced insulin secretion. 
These findings were further supported by pharmacological observations, which suggested a marked reduction in 
glucose-, but not KCl-stimulated insulin secretion by acetyl farnesyl cysteine (AFC), a selective inhibitor of ICMT. In 
addition, glucose-induced Rac1 activation, a hallmark signaling step involved in glucose-stimulated insulin secretion, 
was markedly inhibited following pharmacological (AFC) or molecular biological (siRNA-ICMT) inhibition of ICMT. Lastly, 
we also noticed a marked reduction in glucose-induced acute increase in the generation of reactive oxygen species in 
INS 832/13 cells pre-treated with AFC or transfected with siRNA-ICMT. Together, these data suggest that ICMT regulates 
glucose-induced Rac1 activation, generation of reactive oxygen species and insulin secretion in pancreatic β-cells.

Isoprenylcysteine carboxyl methyltransferase 
facilitates glucose-induced Rac1 activation,  

ROS generation and insulin secretion  
in INS 832/13 β-cells
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hydrophobicity of the candidate proteins for optimal targeting 
to their relevant membranous sites for the regulation of effector 
proteins.1-3

While a significant number of recent studies have focused 
on putative roles of G-protein prenylation in glucose-stimulated 
insulin secretion (GSIS), very little is known with regard to the 
potential roles of carboxymethylation in islet function.3 Original 
studies from our laboratory have attempted to address the roles 
of carboxymethylation in islet function, including insulin secre-
tion.4,5 Therein, using selective inhibitors of ICMT such as ace-
tyl farnesyl cysteine (AFC), we have been able to demonstrate 
that Cdc42 and Gγ subunits undergo carboxymethylation in 
response to glucose in clonal β-cells, normal rat and human 
islets.4,5 Follow-up studies by Li and coworkers characterized 
ICMT in insulin-secreting cells for its subcellular localization 
and regulation by known second messengers of insulin secretion.6 
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species and insulin secretion. For example, using selective inhib-
itors of prenylation (e.g., GGTI-2147), we have demonstrated 
that post-translational prenylation of Rac1 is important for its 
regulation of generation of reactive oxygen species.11 Therefore, 
based on the above evidence and as a logical extension to studies 
to suggest obligatory roles of ICMT-mediated carboxymethyl-
ation of Rac1 function for its subcellular localization and func-
tion,12,13 we undertook the current investigation to determine 
the regulatory roles of ICMT in glucose-induced Rac1 activa-
tion, generation of reactive oxygen species and insulin secretion 
in INS 832/13 cells. We have accomplished this goal by two dis-
tinct approaches to compromise the β-cell endogenous ICMT 
function, via siRNA-mediated knockdown of ICMT expression 
and pharmacological inhibition of ICMT by AFC. Indeed, data 
accrued from the current studies underscores the importance of 
carboxymethylation of Rac1 in glucose-induced Nox activation 
and associated generation of reactive oxygen species and insulin 
secretion.

Results

ICMT is expressed in INS 832/13 cells. At the outset we deter-
mined the immunological localization and subcellular distribu-
tion of ICMT in INS 832/13 cells. For this, total particulate and 
soluble fractions were isolated from INS 832/13 cells by a single 
step centrifugation method and relative abundance of ICMT 
was determined in these fractions by western blotting. Data in  
Figure 1 suggested a predominant membrane association of 
ICMT in these cells. It should also be noted that we consistently 
observed a doublet for ICMT on western blots, which might 

In the current study, we have revisited this area of islet biology 
to precisely determine the role of carboxymethylation and the 
identity of methylated proteins to further evaluate their roles in 
the signaling events leading to insulin secretion.

Along these lines, emerging evidence implicates novel regula-
tory roles for phagocyte-like NADPH oxidases (Nox) in physio-
logical insulin secretion. For example, using selective inhibitors 
(e.g., DPI or apocynin) and molecular biological tools (e.g., 
antisense and siRNAs for Nox subunits), several recent stud-
ies have demonstrated “second messenger” roles for Nox-derived 
reactive oxygen species in glucose-stimulated insulin secretion.7-9 
Some of these aspects, including downstream targets for reactive 
oxygen species signals, have been reviewed by Pi and Collins 
recently in reference 10. Furthermore, recent studies from our 
laboratory have also demonstrated a novel regulatory role for 
Rac1 in Nox-derived generation of reactive oxygen species, thus 
suggesting that glucose-induced Rac1 activation step might 
be necessary for Nox-mediated generation of reactive oxygen 

Figure 1. Expression and subcellular distribution of ICMT in INS 832/13 
cells. Total particulate and soluble fractions were isolated from INS 
832/13 cells by a single step centrifugation method described in Materi-
als and Methods. ICMT expression was determined in these fractions by 
western blotting. A representative of three blots is shown here.

Figure 2. Localization of ICMT in INS 832/13 cells by immunofluorescence under basal and glucose-stimulated conditions. INS 832/13 cells were plated 
on coverslips and cultured overnight in low serum low glucose media prior to incubation with either 2.5 mM (A) or 20 mM glucose (B) for 45 min at 
37°C. The cells were fixed in 4% paraformaldehyde solution in PBS for 15 min and permeabilized using 0.2% triton X-100 for 15 min. Fixed cells were 
examined for ICMT (stained in green) and nuclei (stained in blue) as described under Methods.
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than ~70 % inhibition in the expression of ICMT following 
siRNA-ICMT transfection. Data in Figure 3C suggested no 
significant effects of scrambled siRNA transfection either on 
basal or glucose-induced insulin secretion (bars 1 vs. 3 and 2 
vs. 4). However, transfection of siRNA-ICMT in these cells led 
to a modest increase in basal secretion (bars 1 or 2 vs. 5), but 
insulin secretion elicited by stimulatory glucose was significantly 
reduced in ICMT knocked down cells (bars 2 or 4 vs. 6). This 
data suggested that activation of ICMT is necessary for glucose-
stimulated insulin secretion to occur. We then determined 
potential requirement for ICMT in insulin secretion elicited by 
a membrane depolarizing concentration of KCl. Data shown in 
Figure 3D suggested no significant effects of ICMT knockdown 

represent a post-translationally modified form of this protein. 
In the next series of studies we determined the distribution of 
ICMT in INS 832/13 cells by immunofluorescence method. 
Data in Figure 2 suggested that ICMT (green) remain diffused 
throughout the cell under basal [(A) LG; 2.5 mM glucose] condi-
tions. Further, we observed no clear effects of stimulatory glucose 
[(B) HG; 20 mM glucose] on ICMT distribution in these cells.

siRNA-mediated knockdown of ICMT attenuates glu-
cose-, but not KCl-induced insulin secretion in INS 832/13 
cells. We next investigated potential regulatory roles of ICMT 
in glucose-induced insulin secretion in these cells. To address 
this, we knocked down the endogenous expression of ICMT by 
siRNA methodology. Data in Figure 3A and B indicated more  

Figure 3. Glucose-, but not KCl-stimulated insulin secretion, is attenuated in INS 832/13 cells following siRNA-mediated knockdown of ICMT.  
INS 832/13 cells were either mock transfected or transfected with scrambled siRNA or siRNA-ICMT at a final concentration of 100 nM and cultured for 
24 h. Transfection efficiency was determined by separating equal amounts of proteins on SDS-PAGE and probing with ICMT antibody [(A) representa-
tive of three transfections is shown here]. Data in (A) was densitometrically analyzed and expressed as fold change over basal (B). *p < 0.05 compared 
with mock or scrambled siRNA transfected cells. Further, transfected cells were incubated either with low glucose (LG; 2.5 mM) or high glucose [(C) HG; 
20 mM] or a membrane depolarizing concentration of KCl [(D) 60 mM; osmolaity adjusted by lowering NaCl] for 45 min at 37°C. Insulin released into 
the medium was quantitated by ELISA. Data are expressed as percentage of basal and are mean ± SEM from three independent determinations.  
*p < 0.05 vs. respective low glucose controls; **p < 0.05 vs. mock transfected cells.
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requirement for post-translational geranylgeranylation in glucose-
induced Rac1 activation and insulin secretion.16 Since Rac1 
undergoes carboxymethylation, we investigated if silencing of 
ICMT affects glucose-induced Rac1 activation. Data shown in 
Figure 4 demonstrated a significant increase in glucose-induced 
Rac1 activation (lane 1 vs. 3). siRNA-mediated knockdown of 
ICMT failed to exert any clear effects on basal Rac1 activation 
(lane 1 vs. 2), but significantly attenuated glucose-induced Rac1 
activation (lane 3 vs. 4). Pooled data from multiple experiments 
are provided in Figure 4B. Together, these findings suggested a 
requirement for carboxymethylation for glucose-induced activa-
tion of Rac1.

siRNA-mediated knockdown of ICMT markedly inhib-
its glucose-induced reactive oxygen species generation in INS 
832/13 cells. Emerging evidence from multiple laboratories 
appears to suggest novel second messenger roles for reactive 
oxygen species in glucose-stimulated insulin secretion.10 It has 
also been shown that reactive oxygen species generated via the 
activation of phagocyte-like NADPH oxidase (Nox) plays such 
regulatory roles in glucose-stimulated insulin secretion since 
pharmacological (e.g., apocynin or DPI) or molecular biologi-
cal (e.g., siRNA or antisense for p47phox) inhibition of Nox led 
to inhibition of glucose-stimulated insulin secretion.8-10 Since 
Rac1 represents one of the members of Nox holoenzyme,2,18 we 
investigated if siRNA-mediated knockdown of ICMT exerts any 
regulatory effects on glucose-induced generation of reactive oxy-
gen species in INS 832/13 cells. Data in Figure 5 suggested no 

on KCl-induced insulin secretion. Together, data in Figure 3C 
and D suggest that glucose, but not KCl-evoked insulin secretion 
is mediated via activation of ICMT.

siRNA-mediated knockdown of ICMT attenuates glucose-
induced Rac1 activation in INS 832/13 cells. Published evi-
dence from several laboratories, including our own have suggested 
that activation of Rac1, a small G-protein, is a requisite step in 
the signaling events leading to glucose-insulin secretion.2,14,15 
Furthermore, using inhibitors of post-translational geranylgera-
nylation (e.g., GGTI-2147) or a dominant negative mutant of the 
α-subunit of geranylgeranyl transferase, we have demonstrated a 

Figure 4. Depletion of endogenous ICMT markedly attenuates glucose-
induced activation of Rac1 in INS 832/13 cells. INS 832/13 cells were 
transfected with ICMT-siRNA or mock transfected and cultured for 24 h. 
At confluence, cells were starved overnight and stimulated with either 
low (2.5 mM) or high (20 mM) glucose for 30 min. The extent of Rac1 ac-
tivation in these cells was quantitated by PAK-PBD pulldown assay. Total 
and activated (Rac1.GTP) were determined by western blotting (A) and 
quantitated by densitometry (B). Data are expressed as fold change in 
Rac1 activation and are mean ± SEM from three independent determi-
nations. *p < 0.05 vs. mock transfected low glucose; **p < 0.05 vs. mock 
transfected high glucose.

Figure 5. Glucose-induced ROS generation was attenuated in INS 
832/13 cells following siRNA-mediated knockdown of ICMT. INS 832/13 
cells transfected with ICMT-siRNA (or mock transfected) following 
which cells were stimulated with low glucose (2.5 mM) or high glucose 
(20 mM) for 1 h and were incubated with DCHFDA (10 μM; 30 min) and 
harvested for quantitation of DCF fluorescence. Data expressed as DCF 
fluorescence and are mean ± SEM from three independent determina-
tions. *p < 0.05 vs. respective low glucose; **p < 0.05 vs. high glucose in 
mock transfected cells.
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Acetyl farnesyl cysteine (AFC), a selective inhibitor of 
ICMT, attenuates glucose-induced generation of reactive 
oxygen species and insulin secretion in INS 832/13 cells. 
We next confirmed the above data accrued through the use of 
siRNA-ICMT by a pharmacological approach. In the follow-
ing studies. we determined the effects of acetyl farnesyl cyste-
ine (AFC), a selective inhibitor of ICMT,4,5 on glucose-induced 
generation of reactive oxygen species and insulin secretion.  

significant effects of ICMT knockdown on basal levels of reac-
tive oxygen species in these cells (bar 1 vs. 2). However, glucose-
induced generation of reactive oxygen species was markedly 
attenuated in cells in which expression of ICMT was knocked 
down (bar 3 vs. 4). Taken together, these data demonstrated that 
glucose-induced Rac1 activation (Fig. 4), generation of reactive 
oxygen species (Fig. 5) and insulin secretion (Fig. 3) are regu-
lated by ICMT in INS 832/13 β-cells.

Figure 6. AFC, a competitive inhibitor of ICMT, attenuates glucose-induced ROS generation and insulin secretion in INS 832/13 cells. INS 832/13 cells 
were cultured overnight with low-glucose and low-serum medium and then incubated in KRB in the presence of diluent or AFC (100 μM; 1 h) as indi-
cated in the figure. Cells were further stimulated with either low glucose (LG; 2.5 mM) or high glucose (HG; 20 mM) for 1 h in continuous presence or 
absence of diluent or inhibitor. At the end of stimulation, ROS generation was determined by quantitating DCF fluorescence (A) as described in Figure 
5. In a separate set of studies glucose- and KCl-stimulated insulin secretion was quantitated (B and C) under conditions described in Materials and 
Methods. Data in (B) are mean ± SEM from three independent determinations. *p < 0.05 vs. low glucose without AFC; **p < 0.05 vs. high glucose with-
out AFC whereas data in (C) are mean ± SEM from 12 determinations in each case. *p < 0.05 vs. low glucose without AFC and low glucose with AFC.
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oxygen species (~41 ± 10% inhibition by AFC; mean ± SEM from 
three pull down assays; p < 0.05 vs. diluent) and insulin secretion 
(additional data not shown). Together, these data further con-
firm our siRNA-ICMT findings and support our hypothesis that 
ICMT-mediated carboxymethylation of specific proteins (e.g., 
Rac1) plays a positive modulatory role in the cascade of events 
leading to glucose-induced generation of reactive oxygen species 
and insulin secretion in INS 832/13 cells.

Inhibition of ICMT does not affect cell viability. We next 
investigated potential cytotoxic effects, if any, of ICMT knock-
down (via siRNA-ICMT) or inhibition of ICMT activity  
(by AFC) on INS 832/13 cells. We asked this question to be sure 
that either inhibition in Rac1 activation, reactive oxygen species 
generation or insulin secretion seen under these conditions are 
not due to potential loss in cell viability or cell demise following 

Data shown in Figure 6A indicated a modest, but significant 
inhibition in basal level of reactive oxygen species in these cells 
following exposure to AFC (Fig. 6; bar 1 vs. 2). However, increase 
in the level of reactive oxygen species seen in the presence of stim-
ulatory glucose was significantly inhibited by AFC (Fig. 6; bar 3 
vs. 4). Furthermore, insulin secretion elicited by stimulatory 
(Fig. 6B; bar 3 vs. 4), but not basal glucose (Fig. 6B; bar 1 vs. 2), 
was markedly attenuated by AFC. In addition, in a manner akin 
to siRNA-ICMT effects, we observed no significant effects of 
AFC on KCl-induced insulin secretion (Fig. 6C). Together, our 
above described findings confirm that glucose-, but not KCl-
mediated effects on insulin secretion require activation of ICMT. 
Furthermore, along these lines, we also noticed a significant 
inhibition of glucose-induced activation of Rac1 by AFC under 
the conditions it inhibited glucose-induced generation of reactive 

Figure 7.  ICMT inhibition does not affect cell viability. (A) INS 832/13 cells were mock transfected or transfected either with ICMT siRNA or scrambled 
siRNA (100 nmol, 24h) or treated with AFC [(B) 100 µM, 1h]. Activated caspase 3 in the lysates was determined by western blot analysis using an 
antiserum that identifies both the native procaspase and degradative product of caspase 3 using etoposide as a positive control as described under 
Methods. A representative blot for [(A) n = 2 determinations] and for [(B) n = 3 determinations] is shown here. Actin was used as a loading control. (C) 
INS 832/13 cells were mock transfected or transfected either with ICMT siRNA or scrambled siRNA (100 nmol, 24h). Cell viability in transfected cells 
was determined by MTT reduction method as described above. Data are means ± SEM from two independent experiments yielding identical results 
with n >12 in each group and expressed as percent change over control. * represents p< 0.05 compared with mock or scrambled siRNA transfected 
cells. (D) INS 832/13 cells treated with AFC (100 µM, 1h) were incubated with MTT (5 mg/mL, 4h) as described in Materials and Methods.  Cell viability 
was determined by quantitating reduction of MTT by metabolically active cells at 570 nm. Data are means ± SEM from two independent experiments 
yielding identical results with n >12 in each group and expressed as percent change over control. * represents p< 0.05 compared with control.
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signaling cascade leading to glucose-induced ROS generation 
and insulin secretion. We have presented supporting evidence via 
two distinct approaches, namely siRNA-mediated knockdown or 
selective pharmacological inhibition of ICMT, which mediates 
the carboxymethylation of these signaling proteins.

At least two distinct carboxylmethyl transferases have been 
identified in insulin secreting cells. The first one is involved in 
methylating the carboxy terminal leucine (Leu-309) of the cata-
lytic subunit of protein phosphatase 2A; such a signaling step has 
been implicated in subunit interaction and catalytic activation of 
the enzyme.22 The second enzyme, which is the focus of the cur-
rent study, is the ICMT. In a previous study, Li and associates 
characterized the ICMT in insulin-secreting cells and normal rat 
islets.6 Such an activity was monitored by quantitating the degree 
of methylation of AFC by the islet ICMT in the presence of [3H] 
S-adenosylmethionine as the methyl donor. Subcellular fraction 
assays revealed that this enzyme activity is enriched in the endo-
plasmic reticulum.6 Along these lines, using the pharmacological 
approaches, we have demonstrated that glucose promotes the car-
boxymethylation of Cdc42, another small G-protein involved in 
cytoskeletal remodeling and glucose-stimulated insulin secretion.4 
It was also demonstrated that the Gγ-subunits also undergo car-
boxymethylation in a glucose-sensitive manner in clonal β-cells, 
normal rat islets and human islets.5 Not much has been reported 
since then with regard to potential functional consequences of car-
boxymethylation in islet function primarily due to lack of experi-
mental tools (e.g., siRNA) to selectively deplete the expression of 
ICMT in isolated β-cells. Indeed, data from the current investi-
gation further reinforce our original hypothesis that in addition 
to prenylation, carboxymethylation of specific G-proteins (e.g., 
Rac1) plays regulatory roles in physiological insulin secretion. 
Such regulatory effects may, in part, be due to the ability of meth-
ylated Rac1 to increase the activation of Nox and associated gen-
eration of reactive oxygen species.

Data accrued in the current studies implicate carboxymeth-
ylation as one of the requisite signaling steps for glucose-induced 
activation by Rac1 in a stimulated β-cell. Moreover, the carboxy-
methylation of Rac1 appears to be necessary for glucose-induced 
Nox activation and generation of reactive oxygen species. In this 
context, using reconstituted systems and the C-terminal Rac1 pep-
tides, Kreck and coworkers have provided experimental support to 
implicate participatory roles for Rac1 in cell-free activation and 
assembly of NADPH-oxidase.23 Compatible with these findings 
are our recent data to implicate inhibition of glucose- or mitochon-
drial-fuel-induced Nox activation and generation of reactive oxy-
gen species in INS 832/13 cells and normal rat islets by inhibitors 

inhibition of ICMT expression and/or activity. We addressed this 
by two independent experimental approaches. In the first, we 
quantitated activation of caspase-3, a hallmark of cellular apopto-
sis, in both siRNA-ICMT transfected cells and AFC-treated cells. 
In the second approach, we quantitated the metabolic viability of 
siRNA-ICMT transfected or AFC-treated cells using the MTT 
assay. Data shown in Figure 7A and B indicated no caspase 3 
activation following siRNA-ICMT transfection or AFC treat-
ment. However, a significant activation of caspase 3 was seen in 
INS 832/13 cells treated with etoposide, which causes apoptosis 
in cells via caspase 3 activation. Together, these data in Figure 7A 
and B suggest no cell death in INS 832/13 cells following inhibi-
tion of expression and activity of ICMT. In addition, we observed 
only a modest inhibition in cell viability as assessed by the MTT 
in cells following ICMT knockdown via siRNA-ICMT (Fig. 7C) 
or AFC treatment (Fig. 7D). Together, these findings suggest that 
the observed inhibition of glucose-induced Rac1 activation, gen-
eration of reactive oxygen species and insulin secretion following 
inactivation of ICMT are specific and do not involve cytotoxic 
mechanisms.

Alterations in ICMT expression in in vitro models of gluco-, 
lipo-, glucolipotoxicity and endoplasmic reticulum stress. A 
growing body of evidence implicates that long-term exposure of 
β-cells to saturated fatty acids (i.e., lipotoxicity), glucose (i.e., glu-
cotoxicity) or both (i.e., glucolipotoxicity) leads to severe metabolic 
dysfunction and eventual demise of the β-cell.19 Furthermore, 
exposure of these cells to thapsigargin, leads to endoplasmic retic-
ular stress via depletion of calcium pools culminating in cellular 
dysfunction.20,21 Therefore, in the last series of these studies we 
investigated potential alterations in the expression of ICMT in 
INS 832/13 cells following exposure to palmitate, glucose or thap-
sigargin. Data shown in Figure 8 indicated a significant increase 
in the expression of ICMT in cells exposed to gluco-, lipo- or glu-
colipotoxic conditions. However, no detectable changes were seen 
in the expression of ICMT protein in thapsigargin-treated cells.

Discussion

Several earlier studies have implicated activation of small 
G-proteins (e.g., Arf6, Cdc42 and Rac1) in physiological insulin 
secretion. Such conclusions were drawn from studies involving 
the use of Clostridial toxins, dominant negative mutants, siR-
NAs and inhibitors of post-translational modifications, including 
prenylation, carboxymethylation and palmitoylation (reviewed in 
ref. 2). To the best of our knowledge, the current study provides 
the first evidence to implicate carboxymethylation of Rac1 in the 

Figure 8. Expression of ICMT in lysates of INS 832/13 cells 
under the duress of gluco-, lipo-, glucolipotoxicity 
and endoplasmic reticulum stress. INS 832/13 cells were 
plated in six-well plates, grown to 70% confluence and 
treated with low glucose (LG, 2.5 mM, 48 h), high glucose 
(HG, 50 mM, 48 h), palmitic acid (PA, 300 μM; 48 h), HG 
plus PA (48 h) and thapsigargin (TH, 0.5 μM, 9 h). ICMT 
expression was determined by western blotting. A repre-
sentative of two blots is shown here. Actin was used as a 
loading control.
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Cytoskeleton (Cat # BK035). ICMT antiserum was from 
Santa Cruz Biotechnology, Inc., (Cat # Sc-130150). DCHFDA  
(Cat # 35845), thapsigargin (Cat # T9033) and etoposide  
(Cat # E1383) were from Sigma Aldrich. Alexa-fluor 488 anti-
rabbit secondary antibody (Cat # A11008) and Hoechst dye 
(Cat# 3570) was from Invitrogen molecular probes. Cell pro-
liferation kit (MTT, Cat # 11465007001) was purchased from 
Roche diagnostics.

Insulin-secreting cells. INS 832/13 cells were provided by Dr. 
Chris Newgard (Duke University Medical Center, Durham, NC) 
and were cultured in RPMI 1640 medium containing 10% heat-
inactivated fetal bovine serum supplemented with 100 IU/ml 
 penicillin and 100 IU/ml streptomycin, 1 mM sodium pyruvate, 
2-mercaptoethanol (50 μM) and 10 mM HEPES (pH 7.4). The 
medium was changed twice weekly and cells were trypsinized 
and subcloned weekly.

Isolation of total particulate and soluble fractions from INS 
832/13 cells. INS 832/13 cells were homogenized in RIPA buffer 
(50 mm Tris-HCl, pH 7.4, 1% NP-40, 0.25% sodium deoxy-
cholate, 150 mm NaCl, 1 mM EDTA, 1 mM PMSF, 1 mM 
Na

3
VO

4
, 1 mM NaF and protease inhibitor cocktail) and were 

centrifuged at 105,000x g for 1 h to separate total particulate and 
soluble fractions. Proteins from individual fraction were resolved 
by SDS-PAGE and transferred to a nitrocellulose membrane. 
The blots were then probed with antibody raised against ICMT 
(1:500 dilution) and with rabbit secondary antibody conjugated 
to horseradish peroxidase. Immune complexes were then detected 
using the enhanced chemiluminescence kit.

Immunofluorescence studies. INS 832/13 cells were plated 
onto coverslips and incubated with (2.5 or 20 mM) glucose for 
45 min at 37°C followed by washing in PBS and fixed with 4% 
paraformaldehyde solution for 15 min at room temperature. 
They were then permeabilized with 0.2% Triton X-100 for  
15 min at room temperature. After blocking with 1% BSA for  
1 h, the cells were further incubated with primary antibody 
ICMT (1:150) in 0.1% BSA solution for 1 h. After extensive 
washes, the cells were further incubated with secondary anti-
body Alexa-fluor 488 anti-rabbit (1:1,000) in 0.1% BSA solution 
for 1 hr at 37°C. Hoechst dye was used to stain for nuclei. The 
coverslips were then mounted on glass slides containing mount-
ing media (DAKO corporation; Carpinteria, CA) and visualized 
under an Olympus IX71 inverted fluorescence microscope using 
a x100 oil-immersion lens.17

siRNA-mediated knockdown of ICMT. Endogenous expres-
sion of ICMT was knocked down by transfecting INS 832/13 
cells with ICMT-siRNA. In brief, INS 832/13 cells were plated 
on 24-well plates and transfection with ICMT-siRNA was 
performed at 50–60% confluence at a final concentration of  
100 nM using HiPerFect transfection reagent. Further, to assess 
specificity of siRNA, cells were transfected in parallel with non-
targeting siRNA (scrambled siRNA; 100 nM). Transfected cells 
were cultured in complete growth medium for 24 h and effi-
ciency of ICMT knockdown was determined by western blot 
analysis.

Caspase 3 activity. Activation of caspase-3 was assessed in 
cells either transfected with ICMT siRNA or in cells treated 

of protein prenylation. These studies thus provided evidence for 
requisite roles for prenylation in the functional regulation of Nox 
in the islet β-cell.11 Data from the current investigation indicate 
that in addition to prenylation, the carboxymethylation of spe-
cific G-proteins may be necessary for optimal regulation of Nox 
by glucose. More importantly, our current findings also suggest 
that carboxymethylation is necessary for glucose-induced acti-
vation of Rac1, since pretreatment of isolated β-cells with AFC 
or selective depletion of ICMT by siRNA markedly attenuated 
glucose-induced Rac1 activation. These findings are in agree-
ment with recent findings of Cushman and Casey demonstrat-
ing inhibition of EGF-induced Rho A and Rac1 activation by 
cysmethynil, a selective inhibitor of ICMT, in MDA-MD-231 
cells.24 Together, based on the above discussion it is concluded 
that both prenylation and carboxymethylation of Rac1 are nec-
essary for glucose-induced Nox-mediated ROS generation and 
insulin secretion. It is important to note that palmitoylation of 
cysteine residues upstream to prenylated and carboxylmethylated 
Rac1 may not be involved in this signaling cascade at least based 
on recent studies from Roberts and associates who reported no 
known consensus palmitoylation motifs for Rac1,25 although this 
remains to verified experimentally in the islet β-cell.

Emerging evidence appears to implicate a significant contrib-
utory role for Nox in the generation of oxidative stress and the 
onset of mitochondrial dysfunction in multiple cell types, includ-
ing the islet β-cell. For example, it has been shown that chronic 
exposure of isolated β-cells to high concentrations of saturated 
fatty acids (e.g., palmitate; lipotoxicity), glucose (i.e., glucotox-
icity) or both (i.e., glucolipotoxicity) or a mixture of cytokines 
(e.g., IL-1β, TNFα and IFNγ) culminates in increased oxidative 
stress, mitochondrial dysfunction and apoptosis in these cells.26-

28 Inhibition of protein prenylation of Rac1 by pharmacologi-
cal approaches (e.g., GGTI-2147) or Rac1 activation by Tiam1, 
a known guanine nucleotide exchange factor for Rac1 (using 
NSC23766) markedly attenuated metabolic dysfunction of the 
β-cell.27,28 Along these lines, data described herein suggest a sig-
nificant increase in the expression of ICMT under glucolipotoxic 
conditions. Whether such an increase in the expression translates 
into increased ICMT activity remains to be verified. Nonetheless, 
it may be likely that use of selective inhibitors of carboxymeth-
ylation might prove to be valuable in preventing oxidative stress 
induced under the duress of glucolipotoxicity and/or cytokines. 
These are being studied in our laboratory currently. Based on 
the data accrued in the current studies we conclude that ICMT 
regulates glucose-induced Rac1 activation, generation of reactive 
oxygen species and insulin secretion in pancreatic β-cells.

Materials and Methods

Materials. siRNA-ICMT (Cat # 43907710) and scrambled 
siRNA (negative control; Cat # 4390843) were from Ambion. 
AFC was from Cayman Chemical (Cat # 63270). ECL reagent 
was from GE Healthcare (Cat # RPN2132). HiPerFect trans-
fection reagent was obtained from Qiagen (Cat # 301705). The 
rat insulin ELISA kit was from American Laboratory Products 
(Cat # 80-INSRTH-E01). Rac1 activation assay kit was from 
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Proteins were separated on 12% SDS-PAGE and immunoblotted 
for activated Rac1.

NADPH oxidase activity assay. This was carried according 
the method we described recently in reference 27 and 28. In brief, 
INS 832/13 cells were plated in six-well plates, grown to subcon-
fluence and then either transfected with ICMT-siRNA or treated 
with AFC (100 μM; 1 h). The cells were washed with PBS and 
further incubated with 2',7'-dichloro-dihydrofluorescein diace-
tate (DCHFDA, 10 μM) for 30 min at 37°C. Cells were then 
harvested and centrifuged. The pellet was resuspended in PBS 
and protein concentration was determined using Bradford’s assay. 
Equal amount of proteins were taken and fluorescence was mea-
sured at excitation and emission wavelengths of 485 and 530 nm 
respectively (using Perkin Elmer fluorimeter, Waltham, MA).

ICMT expression profile. INS 832/13 cells were plated 
in six-well plates, grown to 70% confluence and treated with 
low glucose (2.5 mM), high glucose (50 mM), palmitic acid  
(300 μM), palmitic acid plus high glucose for 48 h or thapsigar-
gin (0.5 μM) for 9 h. Cells were then harvested and centrifuged. 
The pellet was resuspended in buffer solution (0.5% Nonidet 
P-40, 20 mM HEPES, pH 7.4, 100 mM NaCl, 20 mM DTT 
and protease inhibitor cocktail). Equal amount of proteins were 
resolved by SDS-PAGE and transferred to a nitrocellulose mem-
brane. The blots were then probed with antibody raised against 
ICMT (1:500 dilution) and with rabbit secondary antibody con-
jugated to horseradish peroxidase. Immune complexes were then 
detected using the enhanced chemiluminescence kit.

Statistical analysis. Data are presented as mean ± SEM. 
Statistical significance differences between values were evaluated 
by Student’s t-test or ANOVA where appropriate. p < 0.05 was 
considered to be statistically significant.
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low serum-low glucose-containing media. They were stimulated 
further either with low or high glucose or potassium chloride 
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of time indicated in the text. In studies involving KCl-induced 
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Type 2 diabetes mellitus is marked by a substantial beta-cell failure which is 

characterized by defective insulin secretion and resistance to insulin. Understanding the 

molecular events leading to Glucose-stimulated insulin secretion [GSIS] might serve as 

therapeutic potential towards diabetes. GSIS involves interplay between small G-

proteins and their regulatory factors. Herein, I tested the hypothesis that Arf nucleotide 

binding site opener [ARNO], a guanine nucleotide exchange factor [GEF] for the small 

G-protein Arf6, mediates the activation of Arf6, and that ARNO/Arf6 signaling axis, in 

turn, controls the activation of downstream effectors. Salient features of my study are: [i] 

ARNO/Arf6 is expressed in clonal β-cells, rodent islets and human islets; [ii] 

overexpression of inactive mutants of ARNO or Arf6 or siRNAs of Arf6 or ARNO 

reduces both GSIS and membrane depolarization induced insulin release in clonal β-

cell line; [iii] secinH3, a selective inhibitor of ARNO/Arf6 signaling pathway, also inhibits 
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GSIS in INS 832/13 cells and rodent islets; [iv] insulinotropic concentration of glucose 

stimulates Arf6 activation; [v] glucose-induced Arf6 activation is inhibited by secinH3 or 

siRNA-ARNO, suggesting a critical involvement of ARNO/Arf6 in insulin secretion; and 

[vi] glucose promotes association between ARNO and Arf6 as evidenced by co-

immunoprecipitation and confocal microscopic studies. These findings provide the first 

evidence to implicate novel roles for ARNO/Arf6 in insulin secretion. 

There are many factors that contribute to GSIS including various enzymes, small 

G-proteins and actin remodelers. As a step towards elucidating the ARNO/Arf6 

signaling cascade, I identified potential downstream effectors that were regulated by 

ARNO/Arf6 upon glucose stimulation.  I identified potential effectors using an ARNO-

selective inhibitor [e.g., secinH3] and determined regulatory roles for Arf6/ARNO in 

promoting phospholipase D [PLD], extracellular-regulated kinases [ERK 1/2], 

Rac1/Cdc42, NADPH oxidase [Nox], reactive oxygen species [ROS], dynamin-1 and 

cofilin [actin-severing protein] signaling steps in isolated beta-cells.  

Lastly, this work demonstrates dysfunction of Arf6 and Rac1 in beta-cells 

exposed to glucotoxicity and their abnormal response to physiological concentrations of 

glucose. This evidence indicates that defective insulin secretion seen in progressive 

beta-cell failure even after normalization might be at the level of abnormal functioning of 

small G-proteins. Together my data suggest Arf6/ARNO → PLD →Rac1 → Nox → 

cofilin signaling cascade regulate the exo-endocytotic pathway leading to GSIS.  
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